欢迎访问吾小秘【www.wxiaomi.cn】,您身边的文字小秘书!

高中数学知识点总结

时间:

高中数学知识点总结【精品7篇】

  【导语】在我们高中生涯的尽头,为了向老师们表达我们对他们辛勤教导的感激之情,我们总结了这些宝贵的数学知识点。本文是会员“luduhehedui”收集的高中数学知识点总结(共7篇),供大家品鉴。

高中数学知识点总结

高中数学知识点总结 篇1

  1:一般式:Ax%2BBy%2BC=0(A、B不同时为0)适用于所有直线

  K=-A/B,b=-C/B

  A1/A2=B1/B2≠C1/C2←→两直线平行

  A1/A2=B1/B2=C1/C2←→两直线重合

  横截距a=-C/A

  纵截距b=-C/B

  2:点斜式:y-y0=k(x-x0)适用于不垂直于x轴的直线

  表示斜率为k,且过(x0,y0)的直线

  3:截距式:x/a%2By/b=1适用于不过原点或不垂直于x轴、y轴的直线

  表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线

  4:斜截式:y=kx%2Bb适用于不垂直于x轴的直线

  表示斜率为k且y轴截距为b的直线

  5:两点式:适用于不垂直于x轴、y轴的直线

  表示过(x1,y1)和(x2,y2)的直线

(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)

  6:交点式:f1(x,y)m%2Bf2(x,y)=0适用于任何直线

  表示过直线f1(x,y)=0与直线f2(x,y)=0的交点的直线

  7:点平式:f(x,y)-f(x0,y0)=0适用于任何直线

  表示过点(x0,y0)且与直线f(x,y)=0平行的直线

  8:法线式:x·cosα%2Bysinα-p=0适用于不平行于坐标轴的直线

  过原点向直线做一条的垂线段,该垂线段所在直线的倾斜角为α,p是该线段的长度

  9:点向式:(x-x0)/u=(y-y0)/v(u≠0,v≠0)适用于任何直线

  表示过点(x0,y0)且方向向量为(u,v)的直线

  10:法向式:a(x-x0)%2Bb(y-y0)=0适用于任何直线

  表示过点(x0,y0)且与向量(a,b)垂直的直线

  11:点到直线距离

  点P(x0,y0)到直线Ι:Ax%2BBy%2BC=0的距离

  d=|Ax0%2BBy0%2BC|/√A2%2BB2

  两平行线之间距离

  若两平行直线的方程分别为:

  Ax%2BBy%2BC1=OAx%2BBy%2BC2=0则

  这两条平行直线间的距离d为:

  d=丨C1-C2丨/√(A2%2BB2)

  12:各种不同形式的直线方程的局限性:

(1)点斜式和斜截式都不能表示斜率不存在的直线;

(2)两点式不能表示与坐标轴平行的直线;

(3)截距式不能表示与坐标轴平行或过原点的直线;

(4)直线方程的一般式中系数A、B不能同时为零。

  13:位置关系

  若直线L1:A1x%2BB1y%2BC1=0与直线L2:A2x%2BB2y%2BC2=0

  1、当A1B2-A2B1≠0时,相交

/A2=B1/B2≠C1/C2,平行

/A2=B1/B2=C1/C2,重合

%2BB1B2=0,垂直

高中数学知识点总结 篇2

高考数学导数知识点

(一)导数第一定义

  设函数y = f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0 %2B △x也在该邻域内)时,相应地函数取得增量△y = f(x0 %2B △x)— f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y = f(x)在点x0处可导,并称这个极限值为函数y = f(x)在点x0处的导数记为f(x0),即导数第一定义

(二)导数第二定义

  设函数y = f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x — x0也在该邻域内)时,相应地函数变化△y = f(x)— f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y = f(x)在点x0处可导,并称这个极限值为函数y = f(x)在点x0处的导数记为f(x0),即导数第二定义

(三)导函数与导数

  如果函数y = f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y = f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y = f(x)的导函数,记作y,f(x),dy/dx,df(x)/dx。导函数简称导数。

(四)单调性及其应用

  1。利用导数研究多项式函数单调性的一般步骤

(1)求f¢(x)

(2)确定f¢(x)在(a,b)内符号(3)若f¢(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f¢(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数

  2。用导数求多项式函数单调区间的一般步骤

(1)求f¢(x)

(2)f¢(x)>0的解集与定义域的交集的对应区间为增区间;f¢(x)<0的解集与定义域的交集的对应区间为减区间

高中数学重难点知识点

  高中数学包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学习两本书。

  必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

  必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角

  这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22———27分

  2、直线方程:高考时不单独命题,易和圆锥曲线结合命题

  3、圆方程:

  必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分

  必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15———20分,并且经常和其他函数混合起来考查

  2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分

  必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17———22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

高中数学知识点大全

  一、集合与简易逻辑

  1、集合的元素具有确定性、无序性和互异性。

  2、对集合,时,必须注意到“极端”情况:或;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集。

  3、判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”。

  4、“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”。

  5、四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”。

  原命题等价于逆否命题,但原命题与逆命题、否命题都不等价。反证法分为三步:假设、推矛、得果。

  6、充要条件

  二、函数

  1、指数式、对数式,

  2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”。

(2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个。

(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像。

  3、单调性和奇偶性

(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同。

  偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反。

(2)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”。

  复合函数的奇偶性特点是:“内偶则偶,内奇同外”。复合函数要考虑定义域的变化。(即复合有意义)

  4、对称性与周期性(以下结论要消化吸收,不可强记)

(1)函数与函数的图像关于直线(轴)对称。

  推广一:如果函数对于一切,都有成立,那么的图像关于直线(由“和的一半确定”)对称。

  推广二:函数,的图像关于直线对称。

(2)函数与函数的图像关于直线(轴)对称。

(3)函数与函数的图像关于坐标原点中心对称。

  三、数列

  1、数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前项和公式的关系

  2、等差数列中

(1)等差数列公差的取值与等差数列的单调性。

(2)也成等差数列。

(3)两等差数列对应项和(差)组成的新数列仍成等差数列。

(4)仍成等差数列。

(5)“首正”的递等差数列中,前项和的最大值是所有非负项之和;“首负”的递增等差数列中,前项和的最小值是所有非正项之和;

(6)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定。若总项数为偶数,则“偶数项和“奇数项和=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和—偶数项和”=此数列的中项。

(7)两数的等差中项惟一存在。在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解。

(8)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式)。

  3、等比数列中:

(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的`单调性。

(2)两等比数列对应项积(商)组成的新数列仍成等比数列。

(3)“首大于1”的正值递减等比数列中,前项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前项积的最小值是所有小于或等于1的项的积;

(4)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定。若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和“首项”加上“公比”与“偶数项和”积的和。

(5)并非任何两数总有等比中项。仅当实数同号时,实数存在等比中项。对同号两实数的等比中项不仅存在,而且有一对。也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时)。在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解。

(6)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式)。

  4、等差数列与等比数列的联系

(1)如果数列成等差数列,那么数列(总有意义)必成等比数列。

(2)如果数列成等比数列,那么数列必成等差数列。

(3)如果数列既成等差数列又成等比数列,那么数列是非零常数数列;但数列是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件。

(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数。

  如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列。

  5、数列求和的常用方法:

(1)公式法:①等差数列求和公式(三种形式),

②等比数列求和公式(三种形式),

(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和。

(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法)。

(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前和公式的推导方法之一)。

(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和

(6)通项转换法。

  四、三角函数

  1、终边与终边相同(的终边在终边所在射线上)。

  终边与终边共线(的终边在终边所在直线上)。

  终边与终边关于轴对称

  终边与终边关于轴对称

  终边与终边关于原点对称

  一般地:终边与终边关于角的终边对称。

  与的终边关系由“两等分各象限、一二三四”确定。

  2、弧长公式:,扇形面积公式:1弧度(1rad)。

  3、三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正。

  4、三角函数线的特征是:正弦线“站在轴上(起点在轴上)”、余弦线“躺在轴上(起点是原点)”、正切线“站在点处(起点是)”。务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’‘纵坐标’、‘余弦’‘横坐标’、‘正切’‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与值的大小变化的关系为锐角

  5、三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;

  6、三角函数诱导公式的本质是:奇变偶不变,符号看象限。

  7、三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!

  角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换。

  8、三角函数性质、图像及其变换:

(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性

  注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变。既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定。如的周期都是,但的周期为,y=|tanx|的周期不变,问函数y=cos|x|,y=cos|x|是周期函数吗?

(2)三角函数图像及其几何性质:

(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换。

(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法。

  9、三角形中的三角函数:

(1)内角和定理:三角形三角和为,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余。锐角三角形三内角都是锐角三内角的余弦值为正值任两角和都是钝角任意两边的平方和大于第三边的平方。

(2)正弦定理:(R为三角形外接圆的半径)。

(3)余弦定理:常选用余弦定理鉴定三角形的类型。

  五、向量

  1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征。

  2、几个概念:零向量、单位向量(与共线的单位向量是,平行(共线)向量(无传递性,是因为有)、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(在上的投影是)。

  3、两非零向量平行(共线)的充要条件

  4、平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数,使a= e1%2B e2。

  5、三点共线;

  6、向量的数量积:

  六、不等式

  1、(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。

(2)解分式不等式的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);

(3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);

(4)解含参不等式常分类等价转化,必要时需分类讨论。注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集。

  2、利用重要不等式以及变式等求函数的最值时,务必注意a,b(或a,b非负),且“等号成立”时的条件是积ab或和a%2Bb其中之一应是定值(一正二定三等四同时)。

  3、常用不等式有:(根据目标不等式左右的运算结构选用)

  a、b、c R,(当且仅当时,取等号)

  4、比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法

  5、含绝对值不等式的性质:

  6、不等式的恒成立,能成立,恰成立等问题

(1)恒成立问题

  若不等式在区间上恒成立,则等价于在区间上

  若不等式在区间上恒成立,则等价于在区间上

(2)能成立问题

(3)恰成立问题

  若不等式在区间上恰成立,则等价于不等式的解集为。

  若不等式在区间上恰成立,则等价于不等式的解集为,

  七、直线和圆

  1、直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义(或)及其直线方程的向量式((为直线的方向向量))。应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?

  2、知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为。

(2)直线在坐标轴上的截距可正、可负、也可为0。直线两截距相等直线的斜率为—1或直线过原点;直线两截距互为相反数直线的斜率为1或直线过原点;直线两截距绝对值相等直线的斜率为或直线过原点。

(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合。

  3、相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是

  4、线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解。

  5、圆的方程:最简方程;标准方程;

  6、解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”

(1)过圆上一点圆的切线方程

  过圆上一点圆的切线方程

  过圆上一点圆的切线方程

  如果点在圆外,那么上述直线方程表示过点两切线上两切点的“切点弦”方程。

  如果点在圆内,那么上述直线方程表示与圆相离且垂直于(为圆心)的直线方程,(为圆心到直线的距离)。

  7、曲线与的交点坐标方程组的解;

  过两圆交点的圆(公共弦)系为,当且仅当无平方项时,为两圆公共弦所在直线方程。

  八、圆锥曲线

  1、圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用。

(1)注意:①圆锥曲线第一定义与配方法的综合运用;

②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆点点距除以点线距商是小于1的正数,双曲线点点距除以点线距商是大于1的正数,抛物线点点距除以点线距商是等于1。

  2、圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势。其中,椭圆中、双曲线中。

  重视“特征直角三角形、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质’”,尤其是双曲线中焦半径最值、焦点弦最值的特点。

  3、在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解。特别是:

①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”。

②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理。

③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式

④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化。

  4、要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等),以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点。

  注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化。

②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响。

③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等。

  九、直线、平面、简单多面体

  1、计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算

  2、计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解。注:一斜线与平面上以斜足为顶点的角的两边所成角相等斜线在平面上射影为角的平分线。

  3、空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用。注意:书写证明过程需规范。

  4、直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质。

  如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式),

  如三棱锥中:侧棱长相等(侧棱与底面所成角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内顶点在底上射影为底面内心。

  5、求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等。注意:补形:三棱锥三棱柱平行六面体

  6、多面体是由若干个多边形围成的几何体。棱柱和棱锥是特殊的多面体。

  正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体。

  7、球体积公式。球表面积公式,是两个关于球的几何度量公式。它们都是球半径及的函数。

  十、导数

  1、导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数,C为常数)

  2、多项式函数的导数与函数的单调性

  在一个区间上(个别点取等号)在此区间上为增函数。

  在一个区间上(个别点取等号)在此区间上为减函数。

  3、导数与极值、导数与最值:

(1)函数处有且“左正右负”在处取极大值;

  函数在处有且左负右正”在处取极小值。

  注意:①在处有是函数在处取极值的必要非充分条件。

②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值。特别是给出函数极大(小)值的条件,一定要既考虑,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记。

③单调性与最值(极值)的研究要注意列表!

(2)函数在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”

  函数在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;

  注意:利用导数求最值的步骤:先找定义域再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小。

高中数学必修知识点总结 篇3

  第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

  主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

  第二:平面向量和三角函数。

  重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

  第三:数列。

  数列这个板块,重点考两个方面:一个通项;一个是求和。

  第四:空间向量和立体几何。

  在里面重点考察两个方面:一个是证明;一个是计算。

  第五:概率和统计。

  这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。

  第六:解析几何。

  这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的`原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

  第七:押轴题。

  考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

  参数方程定义

  一般的,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t)、y=g(t)

  并且对于t的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程则为这条曲线的参数方程,联系x,y的变数t叫做变参数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。(注意:参数是联系变数x,y的桥梁,可以是一个有物理意义和几何意义的变数,也可以是没有实际意义的变数。

  参数方程

  圆的参数方程x=a%2Brcosθy=b%2Brsinθ(a,b)为圆心坐标r为圆半径θ为参数

  椭圆的参数方程x=acosθy=bsinθa为长半轴长b为短半轴长θ为参数

  双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数

  抛物线的参数方程x=2pt?y=2ptp表示焦点到准线的距离t为参数

  直线的参数方程 x=x%26#39;%2Btcosa y=y%26#39;%2Btsina,x%26#39;,y%26#39;和a表示直线经过(x%26#39;,y%26#39;),且倾斜角为a,t为参数。

高中必修一数学知识点总结 篇4

  第I卷(选择题)

  1.设集合U={1,2,3,4,5},A={1,2,3},B={2,3,4},则U(A∩B)=

  A.{1,4,5}B.{2,3}C.{4,5}D.{1,5}

  2.设集合A={x|x2﹣4x%2B3≥0},B={x|2x﹣3≤0},则A∪B=

  A.(﹣∞,1]∪[3,%2B∞)B.[1,3]C.D.

  3.若全集U={1,2,3,4,5},集合M={1,2},N={2,3,4},则(UM)∩N等于

  A.{1}B.{2}C.{3,4}D.{5}

  4.已知集合A={﹣1,2},B={x∈Z|0≤x≤2},则A∩B等于

  A.{0}B.{2}C.φD.φ

  5.设集合A={x|2x≤8},B={x|x≤m2%2Bm%2B1},若A∪B=A,则实数m的取值范围为.

  A.[﹣2,1)B.[﹣2,1]C.[﹣2,﹣1)D.[﹣1,1)

  6.已知集合A={1,2,3},B={0,1,2},则A∩B的子集个数为

  A.2B.3C.4D.16

  7.如果集合A={x|ax2﹣2x﹣1=0}只有一个元素则a的值是

  A.0B.0或1C.﹣1D.0或﹣1

  8.已知集合M={x|(x﹣1)=0},那么

  A.0∈MB.1MC.﹣1∈MD.0M

  9.设A={x|﹣1≤x<2},B={x|x<a},若A∩B≠,则a的取值范围是

  A.a<2B.a>﹣2C.a>﹣1D.﹣1<a≤2

  10.以下五个写法中:①{0}∈{0,1,2};②{1,2};③{0,1,2}={2,0,1};④0∈;⑤A∩=A,正确的个数有

  A.1个B.2个C.3个D.4个

  11.集合{1,2,3}的真子集的个数为

  A.5B.6C.7D.8

  12.已知3∈{1,a,a﹣2},则实数a的值为

  A.3B.5C.3或 5D.无解

  13.已知集合A={﹣1,1},B={x|ax%2B2=0},若BA,则实数a的所有可能取值的集合为

  A.{﹣2}B.{2}C.{﹣2,2}D.{﹣2,0,2}

  14.设所有被4除余数为k(k=0,1,2,3)的整数组成的集合为Ak,即Ak={x|x=4n%2Bk,n∈Z},则下列结论中错误的。是A.∈A0B.﹣1∈A3C.a∈Ak,b∈Ak,则a﹣b∈A0D.a%2Bb∈A3,则a∈A1,b∈A2

  二、填空题

  16.已知集合A={﹣1,3,2m﹣1},集合B={3,m2}.若BA,则实数m= .17.对于任意集合X与Y,定义:①X﹣Y={x|x∈X且xY},②X△Y=(X﹣Y)∪(Y﹣X),(X△Y称为X与Y的对称差).已知A={y|y=2x﹣1,x∈R},B={x|x2﹣9≤0},则A△B=.

  18.函数y=的定义域为A,值域为B,则A∩B=.

  19.若集合为{1,a,}={0,a2,a%2Bb}时,则a﹣b= .20.用M[A]表示非空集合A中的元素个数,记|A﹣B|=,若A={1,2,3},B={x||x2﹣2x﹣3|=a},且|A﹣B|=1,则实数a的取值范围为.

  三、解答题

  21.已知不等式x2%2Bmx%2B3≤0的解集为A=[1,n],集合B={x|x2﹣ax%2Ba≤0}.

(1)求m﹣n的值;

(2)若A∪B=A,求a的取值范围.

  22.已知函数f(x)的定义域为(0,4),函数g(x)=f(x%2B1)的定义域为集合A,集合B={x|a<x<2a﹣1},若A∩B=B,求实数a的取值范围.

  23.已知A={x|x2%2Bx>0},B={x|x2%2Bax%2Bb≤0},且A∩B={x|0<x≤2},A∪B=R,求a、b的值.24.已知集合A={x|x2%2Bpx%2B1=0},B={x|x2%2Bqx%2Br=0},且A∩B={1},(UA)∩B={﹣2},求实数p、q、r的值.

  25.已知元素为实数的集合S满足下列条件:①0S,1S;②若a∈S,则∈S.

(Ⅰ)若{2,﹣2}S,求使元素个数最少的集合S;

(Ⅱ)若非空集合S为有限集,则你对集合S的元素个数有何猜测?并请证明你的猜测正确.

  26.已知集合A={x|x2﹣3x﹣4≤0},B={x|x2﹣2mx%2Bm2﹣9≤0},C={y|y=2x%2Bb,x∈R}

(1)若A∩B=[0,4],求实数m的值;

(2)若A∩C=,求实数b的取值范围;

(3)若A∪B=B,求实数m的取值范围.

  试卷答案

  17.[﹣3,﹣1)∪(3,%2B∞)

  18.[0,2]

  19.﹣1

≤a<4或a>4

  21.(1)利用韦达定理,求出m,n,即可求m﹣n的值;

(2)若A∪B=A,BA,分类讨论求a的取值范围.

【解答】解:(1)∵不等式x2%2Bmx%2B3≤0的解集为A=[1,n],

∴,∴m=﹣4,n=3,

∴m﹣n=﹣7;

(2)A∪B=A,∴BA.

①B=,△=a2﹣4a<0,∴0<a<4;②B≠,设f(x)=x2﹣ax%2Ba,则,∴4≤a≤,

  综上所述,0<a≤.

  22.【解答】解:要使g(x)有意义,则:0<x%2B1<4,

∴﹣1<x<3,

∴A={x|﹣1<x<3};

∵A∩B=B,

∴BA;

①若B=,满足BA,

  则a≥2a﹣1,解得a≤1;

②若B≠,则,

  解得1<a≤2;

  综上,实数a的取值范围是(﹣∞,2].

  23.【解答】解:集合A={x|x2%2Bx>0}={x|x<﹣1或x>0}∴﹣1,2是方程x2%2Bax%2Bb=0的两个根,

∴a=﹣1,b=﹣2

  即a,b的值分别是﹣1,﹣2.

  24.【解答】解:集合A={x|x2%2Bpx%2B1=0},B={x|x2%2Bqx%2Br=0},且A∩B={1},

∴1%2Bp%2B1=0,解得p=﹣2;

  又1%2Bq%2Br=0,①

(UA)∩B={﹣2},

∴4﹣2q%2Br=0,②

  由①②组成方程组解得q=1,r=﹣2;

∴实数p=﹣2,q=1,r=﹣2.

  本题考查了集合的定义与应用问题,是基础题目.

  25.【解答】解:(Ⅰ)2∈S,则﹣1∈S,∈S,可得2∈S;﹣2∈S,则∈S,∈S,可得﹣2∈S,

∴{2,﹣2}S,使元素个数最少的集合S为{2,﹣1,﹣2, }.

(Ⅱ)非空有限集S的元素个数是3的倍数.

  证明如下:

(1)设a∈S则a≠0,1且a∈S,则∈S, =∈S, =a∈S

  假设a=,则a2﹣a%2B1=0(a≠1)m无实数根,故a≠.

  同理可证a,两两不同.

  即若有a∈S,则必有{a, }S.

(2)若存在b∈S(b≠a),必有{b, }S.{a, }∩{b, }=.

  于是{a,b, }S.

  上述推理还可继续,由于S为有限集,故上述推理有限步可中止,

∴S的元素个数为3的倍数.

  26.【解答】解:(1)由A中不等式变形得:(x﹣4)(x%2B1)≤0,

  解得:﹣1≤x≤4,即A=[﹣1,4];

  由B中不等式变形得:(x﹣m%2B3)(x﹣m﹣3)≤0,

  解得:m﹣3≤x≤m%2B3,即B=[m﹣3,m%2B3],

∵A∩B=[0,4],

∴,

  解得:m=3;

(2)∵由C中y=2x%2Bb>b,x∈R,得到C=(b,%2B∞),且A∩C=,A=[﹣1,4],

∴实数b的范围为b≥4;

(3)∵A∪B=B,

∴AB,

∴,

  解得:1≤m≤2.

高中数学基本知识点总结 篇5

  一、求动点的轨迹方程的基本步骤

⒈建立适当的坐标系,设出动点M的坐标;

⒉写出点M的集合;

⒊列出方程=0;

⒋化简方程为最简形式;

⒌检验。

  二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

-直译法:求动点轨迹方程的一般步骤

①建系——建立适当的坐标系;

②设点——设轨迹上的任一点P(x,y);

③列式——列出动点p所满足的关系式;

④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

⑤证明——证明所求方程即为符合条件的动点轨迹方程。

高一数学知识点总结归纳 篇6

  一、一次函数定义与定义式:

  自变量x和因变量y有如下关系:

  y=kx%2Bb

  则此时称y是x的一次函数。

  特别地,当b=0时,y是x的正比例函数。

  即:y=kx(k为常数,k≠0)

  二、一次函数的性质:

  的变化值与对应的x的变化值成正比例,比值为k

  即:y=kx%2Bb(k为任意不为零的实数b取任何实数)

  2.当x=0时,b为函数在y轴上的截距。

  三、一次函数的图像及性质:

  1.作法与图形:通过如下3个步骤

(1)列表;

(2)描点;

(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

  2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx%2Bb。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

,b与函数图像所在象限:

  当k%26gt;0时,直线必通过一、三象限,y随x的增大而增大;

  当k%26lt;0时,直线必通过二、四象限,y随x的增大而减小。

  当b%26gt;0时,直线必通过一、二象限;

  当b=0时,直线通过原点

  当b%26lt;0时,直线必通过三、四象限。

  特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k%26gt;0时,直线只通过一、三象限;当k%26lt;0时,直线只通过二、四象限。

  四、确定一次函数的表达式:

  已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx%2Bb。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx%2Bb。所以可以列出2个方程:y1=kx1%2Bb……①和y2=kx2%2Bb……②

(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

  点击查看:高中数学知识点总结

  五、一次函数在生活中的应用:

  1.当时间t一定,距离s是速度v的一次函数。s=vt。

  2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。

  六、常用公式:

  1.求函数图像的k值:(y1-y2)/(x1-x2)

  2.求与x轴平行线段的中点:|x1-x2|/2

  3.求与y轴平行线段的中点:|y1-y2|/2

  4.求任意线段的长:√(x1-x2)’2%2B(y1-y2)’2(注:根号下(x1-x2)与(y1-y2)的平方和)

  二次函数

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:

  y=ax’2%2Bbx%2Bc

(a,b,c为常数,a≠0,且a决定函数的开口方向,a%26gt;0时,开口方向向上,a%26lt;0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)

  则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax’2%2Bbx%2Bc(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)’2%2Bk[抛物线的顶点P(h,k)]

  交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2ak=(4ac-b’2)/4ax?,x?=(-b±√b’2-4ac)/2a

  III.二次函数的图像

  在平面直角坐标系中作出二次函数y=x’2的图像,

  可以看出,二次函数的图像是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线

  x=-b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为

  P(-b/2a,(4ac-b’2)/4a)

  当-b/2a=0时,P在y轴上;当Δ=b’2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a%26gt;0时,抛物线向上开口;当a%26lt;0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab%26gt;0),对称轴在y轴左;

  当a与b异号时(即ab%26lt;0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

Δ=b’2-4ac%26gt;0时,抛物线与x轴有2个交点。

Δ=b’2-4ac=0时,抛物线与x轴有1个交点。

Δ=b’2-4ac%26lt;0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b’2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  V.二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax’2%2Bbx%2Bc,

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),

  即ax’2%2Bbx%2Bc=0

  此时,函数图像与x轴有无交点即方程有无实数根。

  函数与x轴交点的横坐标即为方程的根。

  1.二次函数y=ax’2,y=a(x-h)’2,y=a(x-h)’2%2Bk,y=ax’2%2Bbx%2Bc(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

解析式顶点坐标对称轴
y=ax’2(0,0)x=0
y=a(x-h)’2(h,0)x=h
y=a(x-h)’2%2Bk(h,k)x=h
y=ax’2%2Bbx%2Bc(-b/2a,[4ac-b’2]/4a)x=-b/2a

  当h%26gt;0时,y=a(x-h)’2的图象可由抛物线y=ax’2向右平行移动h个单位得到,

  当h%26lt;0时,则向左平行移动|h|个单位得到。

  当h%26gt;0,k%26gt;0时,将抛物线y=ax’2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)’2%2Bk的图象;

  当h%26gt;0,k%26lt;0时,将抛物线y=ax’2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)’2%2Bk的图象;

  当h%26lt;0,k%26gt;0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)’2%2Bk的图象;

  当h%26lt;0,k%26lt;0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)’2%2Bk的图象;

  因此,研究抛物线y=ax’2%2Bbx%2Bc(a≠0)的图象,通过配方,将一般式化为y=a(x-h)’2%2Bk的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了。这给画图象提供了方便。

  2.抛物线y=ax’2%2Bbx%2Bc(a≠0)的图象:当a%26gt;0时,开口向上,当a%26lt;0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b’2]/4a).

  3.抛物线y=ax’2%2Bbx%2Bc(a≠0),若a%26gt;0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大。若a%26lt;0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小。

  4.抛物线y=ax’2%2Bbx%2Bc的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b’2-4ac%26gt;0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax’2%2Bbx%2Bc=0

(a≠0)的两根。这两点间的距离AB=|x?-x?|

  当△=0.图象与x轴只有一个交点;

  当△%26lt;0.图象与x轴没有交点。当a%26gt;0时,图象落在x轴的上方,x为任何实数时,都有y%26gt;0;当a%26lt;0时,图象落在x轴的下方,x为任何实数时,都有y%26lt;0.

  5.抛物线y=ax’2%2Bbx%2Bc的最值:如果a%26gt;0(a%26lt;0),则当x=-b/2a时,y最小(大)值=(4ac-b’2)/4a.

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。

  6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

  y=ax’2%2Bbx%2Bc(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)’2%2Bk(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).

  7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。

  反比例函数

  形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

  自变量x的取值范围是不等于0的一切实数。

  反比例函数图像性质:

  反比例函数的图像为双曲线。

  由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

  另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

  如图,上面给出了k分别为正和负(2和-2)时的函数图像。

  当K%26gt;0时,反比例函数图像经过一,三象限,是减函数

  当K%26lt;0时,反比例函数图像经过二,四象限,是增函数

  反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

  知识点:

  1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

  2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

  对数函数

  对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

  右图给出对于不同大小a所表示的函数图形:

  可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数无界。

  指数函数

  指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得

  如图所示为a的不同大小影响函数图形的情况。

  可以看到:

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数)山草香●(单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

  奇偶性

  注图:(1)为奇函数(2)为偶函数

  1.定义

  一般地,对于函数f(x)

(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

  说明:①奇、偶性是函数的整体性质,对整个定义域而言

②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

③判断或证明函数是否具有奇偶性的根据是定义

  2.奇偶函数图像的特征:

  定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。

  f(x)为奇函数《==》f(x)的图像关于原点对称

  点(x,y)→(-x,-y)

  奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

  偶函数在某一区间上单调递增,则在它的对称区间上单调递减。

  3.奇偶函数运算

(1).两个偶函数相加所得的和为偶函数。

(2).两个奇函数相加所得的和为奇函数。

(3).一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数。

(4).两个偶函数相乘所得的积为偶函数。

(5).两个奇函数相乘所得的积为偶函数。

(6).一个偶函数与一个奇函数相乘所得的积为奇函数。

高一数学知识点总结归纳 篇7

  等差数列公式

  等差数列的通项公式为:an=a1%2B(n-1)d

  或an=am%2B(n-m)d

  前n项和公式为:sn=na1%2B[n(n-1)/2] d或sn=(a1%2Ban)n/2

  若m%2Bn=2p则:am%2Ban=2ap

  以上n均为正整数

  文字翻译

  第n项的值=首项%2B(项数-1)公差

  前n项的和=(首项%2B末项)项数/2

  公差=后项-前项

  高中数学数列知识点总结:等比数列公式

  等比数列求和公式

(1) 等比数列:a (n%2B1)/an=q (n∈n)。

(2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m);

(3) 求和公式:sn=n×a1 (q=1) sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q为公比,n为项数)

(4)性质:

①若 m、n、p、q∈n,且m%2Bn=p%2Bq,则am×an=ap×aq;

②在等比数列中,依次每 k项之和仍成等比数列。

③若m、n、q∈n,且m%2Bn=2q,则am×an=aq^2

(5)%26quot;g是a、b的等比中项%26quot;%26quot;g^2=ab(g ≠ 0)%26quot;.

(6)在等比数列中,首项a1与公比q都不为零。 注意:上述公式中an表示等比数列的第n项。

  等比数列求和公式推导: sn=a1%2Ba2%2Ba3%2B...%2Ban(公比为q) qsn=a1q%2Ba2q%2Ba3q%2B...%2Banq =a2%2Ba3%2Ba4%2B...%2Ba(n%2B1) sn-qsn=a1-a(n%2B1) (1-q)sn=a1-a1q^n sn=(a1-a1q^n)/(1-q) sn=(a1-anq)/(1-q) sn=a1(1-q^n)/(1-q) sn=k(1-q^n)~y=k(1-a^x)。

高中数学知识点总结【精品7篇】

将本文的Word文档下载到电脑,方便收藏
推荐度:
点击下载文档文档为doc格式