欢迎访问吾小秘【www.wxiaomi.cn】,您身边的文字小秘书!

《比例的意义》教学设计

时间:

《比例的意义》教学设计汇编13篇

《比例的意义》教学设计

《比例的意义》教学设计 篇1

  教学目标:

  1、 使学生理解并掌握比例的意义,认识比例的各部分名称,探究比例的基本性质,学会应用比例的意义和基本性质判断两个比是否能组成比例,并能正确的组成比例。

  2、 培养学生的观察能力、判断能力。

  教学重点:

  比例的意义和基本性质

  学法:

  自主、合作、探究

  教学准备:

  课件

  教学过程:

  一:创设情境,导入新课

  1、 谈话,播放课件,引出主题图

  师:这节课我们上一节数学课,这节数学课有很多有趣的知识等待着同学们去探索和发现呢!同学们你们有信心接受挑战吗?

  (播放视频,生观察,并说看到的内容)

  师:看到这些画面你的心情怎么样?(激动、兴奋、骄傲、自豪……)

  师:是啊,老师和你们一样,每当听到雄壮的国歌声,看见鲜艳的五星红旗,老师的心情也十分激动,国旗是我们伟大祖国的象征,是神圣的。

  问:画面上这几面国旗有什么不同?(大小不一样)

  师:虽然这几面国旗大小不一样,但是长和宽的比值都是一样的,这节课我们就来研究有关比例的知识。(板书:比例)

  (课件出示主题图,让学生说出长和宽各是多少)

  问:你能根据这些国旗的长和宽的尺寸,写出长与宽的比,并求出比值吗?请同学们先写出学校内两面国旗长与宽的比,并求出比值。(生动手写比、求比值)

  二、引导探究,学习新知

  1、比例的意义

  (生汇报求比值的过程)

  师:请同学们观察你求出的学校内两面国旗的比值,你有什么发现?(这两个比的比值相等)

  师:这两个比的比值相等,我用“=”把这两个比连起来,可以吗?(可以)

  师:从图上四面国旗才尺寸中你还能找出哪些比求出比值,也写成这样的等式呢?请同学们自己动笔试一试(生动手写比,求比值,写等式,并汇报)

  师:指学生汇报的等式小结,像这样由比值相等的两个比组成的等式就是比例,谁能概括出比例的意义?(板书课题,生汇报,是板书意义)

  问:判断两个比是否能组成比例,关键看什么?(关键看它们的比值是否相等)

  (小练习,课件出示)

  2探究比例的基本性质

  (1)自学比例的名称

  师:小结通过刚才的学习,我们理解了比例的意义,那么在比例中各部分名称是怎样的,各部分名称与各项在比例中的位置又有什么关系呢?打开书34页,自学34也上半部分,比例各部分的名称。(生自学名称,汇报,师板书名称)

  (2)合作探究比例的基本性质

  师:同学们,你们知道吗?在比例的内项和外项之间还存在着一个有趣的特性呢!你们想去发现这个特性吗?接下来就请同学们以小组为单位合作探究比例的基本性质。(板书:比例的基本性质) 课件出示小组合作学习提示,指名读

  各小组派一名代表汇报合作学习发现的规律。

  师:是不是所有的比例都具有这样的特性呢?分组验证课前写出的比例式。

  师:问想一想,判断两个比能不能组成比例除了根据比例的意义去判断外还可以根据什么去判断?(生回答:根据比例的基本性质)

  师:如果把比例改写成分数形式是什么样的?生回答。根据比例的基本性质,等号两边的分子和分母之间又有什么关系呢?生回答,师板书

  三、巩固练习(见课件)

  四、汇报学习收获

《比例的意义》教学设计 篇2

  教学内容:

  人教版六年级下册《比例》

  教学目标:

  1、知识目标:理解比例的意义,能正确判断两个比能否成比例,会组比例。

  2、能力目标:通过探索国旗中蕴含的数学知识,提高认知能力。

  3、情感目标:体验获得成功的乐趣,建立学好数学的自信心。

  教学重难点:

  教学重点:理解比例的意义。

  教学难点:应用比例的意义判断两个比能否组成比例,并能正确地组成比例。

  教学工具:

  多媒体课件

  教学过程:

  一、回顾旧知,复习铺垫

  同学们,今天我们开始学习新的单元比例,看到这两个字你有没有联想到一些我们学过的知识呢?(比)上学期我们学过比的相关知识,现在大家回想一下:

  (一)复习

  1、什么叫做比?(表示两个数相除)

  2、你能举例说明比的各部分名称吗?

  比包括前项、后项和比值,比值就指的是比的前项除以后项所得的商,比值是一个数。

  3、请你计算下面各比的比值。

  2:16 :

  (二)谈话导入

  大家对比的知识掌握得很好,接下来我们就进入比例的第一课时比例的意义的学习,首先需要明确本节课同学们的学习目标。请读记一遍:

  1、理解和掌握比例的意义。

  2、能根据比例的意义正确判断两个比能否组成比例并会组比例。

  3、探索国旗中蕴含的数学知识,增强爱国精神。

  二、比较分析,探究新知

  同学们,每周一早上我们学校会举行升国旗仪式,对于国旗你了解多少呢?

  (一)观察

  观察这三幅情境图,它们有什么相同之处呢?(都有国旗)分别在什么地方?(xx广场、校园的`操场和教室里。)

  这些国旗有大有小,长宽不同(点击PPT出示数据),但通过观察我们学校操场和教室里的国旗发现它们的形状都是相似的,都接近这样的一个长方形国旗(点击PPT出示图片),看上去庄严和谐统一。那你有没有见过这样的国旗呢?这说明我们的五星红旗的长与宽一定隐含着某种特点,想弄明白吗?

  (二)计算

  1、我们先来看看学校里的两面国旗的长和宽的比值有什么关系?(点击出示图片文字)

  (1)请同学们在练习本上写出操场与教室的国旗的长与宽之比,再计算出它们的比值。(计算要保证准确)

  :???()(2)指名汇报:操场上的国旗23()2描述:操场上的国旗长宽之比为:,比值为3/2….(2名学生描述)(板书)教室里的国旗

  60:40?60?40?(3)同意他们的结果吗?通过计算你能发现什么吗?(这两幅国旗的长宽虽然不同,但长宽之比都是3/2,是相等的。)(板书等式)既然两个比的比值相等,可以用什么符号把这种关系表示出来?(=)(板书不同颜色)

  (三)讲解

  1、其实不光这三面国旗,在国旗法中规定所有国旗都必须按长与宽的比3/2来制作,而且也只有指定企业才能制作,这是对国旗的尊重!

  2、那谁来说一说像这样的一个式子表示了什么?(表示两个相等的比;表示两个比值相等的比)你们都说出来了重点(板书:比相等)。在数学中,像这样(板书:表示两个比相等的式子叫做比例)。这就是比例的意义。同学们读记一遍。比可以写成分数形式,那比例的呢?(板书)

  三、合作探究,提升理解

  (一)小组讨论,代表发言

  探讨一:判断两个比能否组成比例,关键是什么?(各组的看法是什么?根据比例的概念可知)

  探讨二:你还能从三面国旗中找出哪些比例?(代表发言,xx的国旗长宽之比为5:10/3,比值为3/2,所以还可以找出其他的。)探讨三:比和比例是一样的吗?如果不是,两者有什么区别?(结合同学的回答,可以从两个角度来区分,形式上,意义上。)

  四、巩固应用,提升能力

  对于比例,现在已经有了初步认识,接下来就让我们学以致用。首先我们观察做一做的两道题,可以发现一道关于数的比例,一道关于形的比例,那我们就从这两个方面去理解比例。先独立完成第一题。

  (一)数的比例

  (出示习题和答题规范,提问两组同桌,2分钟完成,订正答案2分钟。出示答案,对板演,对台下答案)

  (二)形的比例

  先观察图形并结合数据,分析边长之间的关系,找出比例。

  一组同桌上台展示,讲解:图中有一大一小两个直角三角形,观察每个三角形两条直角边的数据可得出,每个三角形各自的直角边之比相等;而且两个三角形短直角边之比等于长直角边之比。因此一共能找出8对比例。

  (三)综合提升

  写出比值是5的两个比并组成比例。(提问多名学生汇报)

  五、拓展

  喝过蜂蜜水吗?你会调制吗?下图是调制蜂蜜水时蜂蜜和水的配比情况。怎样调配的呢?(蜂蜜水A用两杯蜂蜜和10杯水调配,蜂蜜水B用3杯蜂蜜和15杯水调配)

  哪种更甜呢?你能用今天所学知识判断出来吗?同桌或小组讨论,点名:

  学生甲:A和B两种蜂蜜水中蜂蜜比是2:3,水的比是10:15,两个比的比值都是2/3,所以我们认为两种蜂蜜水一样甜。

  学生乙:蜂蜜水A的水和蜜的比是10:2,蜂蜜水B的水和蜜的比是15:3,两个比的比值都是5,我们认为两种蜂蜜水一样甜。

  其他同学的想法呢?看来你们很善于动脑筋,这些题都没有难倒你们,但同学们在学习中依然要谦虚努力。

  六、总结

  今天的学习就结束了,相信大家都有自己的收获。孔子有句话说,“学而不思则殆”。所以课后大家独立主动地梳理今天所学知识,形成思维导图,并与同学交流。

《比例的意义》教学设计 篇3

  教学内容:

  义务教育课程标准实验教科书数学六年级下册P43“练一练”和练习十的1~4题

  教学目标:

  1、使学生认识比例的“项”以及“内项”和“外项”。

  2、理解并掌握比例的基本性质。

  3、通过自主学习,让学生经历探究的过程,体验数学学习的快乐。

  教学重点:

  理解并掌握比例的基本性质。

  教学难点:

  探究发现比例的基本性质。

  设计理念:

  本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的基本性质。

  教学步骤教师活动学生活动

  一、复习引新

  导入新课

  1、找找比比:

  (判断下面的比,哪些能组成比例?把组成的比例写出来。)

  3:518:::

  5/8:1/:32:89:27

  学生独立完成,重点说说判断过程。

  2、今天我们继续研究比例的有关知识。

  学生练习

  学生回顾判断两个比能否组成比例的方法

  二、认识比例

  探索规律1、认识比例各部分的名称

  (1)介绍“项”:组成比例的四个数,叫做比例的`项。

  (2)3:5=18:30学生尝试起名。

  师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。

  3:5=18:30

  内项

  外项

  (3)如果把比例写成分数的形式,你还能指出它的内、外项吗?

  出示:3/5=18/30

  (4)已经知道了比例各部分名称,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

  2、教学例4

  (1)理解题意,信息搜索:

  提问:你能根据图中的数据写出比例吗?

  (2)、学生写不同比例:

  引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。

  引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?

  (3)、学生探索规律

  学生先独立思考,再小组交流,探究规律。(板书:两个外项的积等于两个内项的积。)

  (4)、写比例,验证规律:

  是不是任意一个比例都有这样的规律?学生任意写一个比例并验证。

  (5)、师生归纳比例的基本性质:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

  3、思考分数形式的比例3/6=2/4,通过连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分子、分母交叉相乘,结果相等。

  4、练习:“试一试”判断能否组成比例。

  出示“3.6:1.8和0.5:0.25”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。

  提问:2.6:1.8和0.5:0.25能组成比例吗?根据比例的基本性质,能判断两个比能不能组成比例吗?

  学生练习:找出比例中的内项和外项

  6:5=36:30

  4:7=21:49

  学生自主表达,图中有哪些数据信息?

  学生独立思考,再小组交流

  学生练习:如果用字母表示比例的四项,即a:b=c:d,那么这个规律可以表示成()

  学生分析哪两个数是外项,哪两个数是内项。

  比较理解比例的基本性质

  学生思考后归纳:判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。

  三、巩固练习

  拓展提高

  1、做“练一练”

  使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。

  2、在()里填上合适的数。

  5:3=():6

  4:()=():5

  3、做练习十第1、2题学生尝试练习后交流讨论

  先让学生尝试填写,再交流明确思考方法。

  四、全课小结

  总结反馈通过今天的学习,你有哪些收获?

  把你发现规律的方法介绍给朋友、亲人。

  五、课堂作业练习十3、4题

《比例的意义》教学设计 篇4

  教学内容:

  义务教育课程标准实验教科书数学六年级下册P43“练一练”和练习十的1~4题

  教学目标:

  1、使学生认识比例的“项”以及“内项”和“外项”。

  2、理解并掌握比例的基本性质。

  3、通过自主学习,让学生经历探究的过程,体验数学学习的快乐。

  教学重点:

  理解并掌握比例的基本性质。

  教学难点:

  探究发现比例的基本性质。

  设计理念:

  本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的基本性质。

  教学步骤教师活动学生活动

  一、复习引新

  导入新课

  1、找找比比:

  (判断下面的比,哪些能组成比例?把组成的比例写出来。)

  3:518:::

  5/8:1/:32:89:27

  学生独立完成,重点说说判断过程。

  2、今天我们继续研究比例的有关知识。

  学生练习

  学生回顾判断两个比能否组成比例的方法

  二、认识比例

  探索规律1、认识比例各部分的名称

  (1)介绍“项”:组成比例的四个数,叫做比例的项。

  (2)3:5=18:30学生尝试起名。

  师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。

  3:5=18:30

  内项

  外项

  (3)如果把比例写成分数的形式,你还能指出它的内、外项吗?

  出示:3/5=18/30

  (4)已经知道了比例各部分名称,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

  2、教学例4

  (1)理解题意,信息搜索:

  提问:你能根据图中的数据写出比例吗?

  (2)、学生写不同比例:

  引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。

  引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?

  (3)、学生探索规律

  学生先独立思考,再小组交流,探究规律。(板书:两个外项的积等于两个内项的积。)

  (4)、写比例,验证规律:

  是不是任意一个比例都有这样的规律?学生任意写一个比例并验证。

  (5)、师生归纳比例的基本性质:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

  3、思考分数形式的比例3/6=2/4,通过连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分子、分母交叉相乘,结果相等。

  4、练习:“试一试”判断能否组成比例。

  出示“:和:”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。

  提问::和:能组成比例吗?根据比例的基本性质,能判断两个比能不能组成比例吗?

  学生练习:找出比例中的内项和外项

  6:5=36:30

  4:7=21:49

  学生自主表达,图中有哪些数据信息?

  学生独立思考,再小组交流

  学生练习:如果用字母表示比例的四项,即a:b=c:d,那么这个规律可以表示成()

  学生分析哪两个数是外项,哪两个数是内项。

  比较理解比例的基本性质

  学生思考后归纳:判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。

  三、巩固练习

  拓展提高

  1、做“练一练”

  使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。

  2、在()里填上合适的数。

  5:3=():6

  4:()=():5

  3、做练习十第1、2题学生尝试练习后交流讨论

  先让学生尝试填写,再交流明确思考方法。

  四、全课小结

  总结反馈通过今天的学习,你有哪些收获?

  把你发现规律的方法介绍给朋友、亲人。

  五、课堂作业练习十3、4题

《比例的意义》教学设计 篇5

教学目标:

  1、学生根据具体情境教学,结合实例认识正比例,理解正比例的意义,正比例的意义教学设计。

  2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

  3、结合丰富的事例,认识正比例,体会数学源于生活,进一步提高学习兴趣。教学重点:

  结合丰富的事例,认识正比例。能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学难点:

  能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学关键:

  理解成正比例的两个量的意义。

教学过程:

一、复习准备:

  口答

  1、已知路程和时间,怎样求速度?

  2、已知总价和数量,怎样求单价?

  3、已知工作总量和工作时间,怎样求工作效率?

二、数学活动。在学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。

  活动一:在情境中感受两种相关联的量之间的变化规律。

(一)情境一:

  课件出示:

  1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

  2、填完表以后思考讨论,教案《正比例的意义教学设计》。正方形的面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?说说从数据中发现了什么?

  3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是一定的。

  特点是:

①两种相关联的量

②一种量扩大(或缩小)另一种量也扩大(或缩小)

③两种量中相对应的两个量的比的比值是一定的。

  4、正方形的面积与边长的比是边长,是一个不确定的值。

  学生在小组内练说发现的规律,初步感知正比例的判定。

(二)情境二:

  1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

  2、请把下表填写完整。3、从表中你发现了什么规律?说说你发现的规律:路程与时间的比值(速度)相同。

(三)情境三:1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

  2、把表填写完整。3、从表中发现了什么规律?应付的钱数与质量的比值(也就是单价)相同。

  3、说说以上两个例子有什么共同的特点。

  小结:路程随时间的变化而变化,路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,应付的`钱数与质量的比值相同。

  4、正比例关系:观察思考成正比例的量有什么特征?

  小结:

(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是我们今天要学习的内容。

  追问:判断两种相关联的量成不成正比例的关键是什么?(比值是不是一定)

(2)字母表达关系式。

  如果字母y和x分别表示两种相关联的量,用k表示它们的比值,正比例关系怎样用字母表示出来?=k(一定)

(3)质疑。

  师:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?

三、巩固练习

(一)想一想:请生用自己的语言说一说。与同桌交流,再集体汇报

  1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

  2、根据小明和爸爸的年龄变化情况

  把表填写完整。父子的年龄成正比例吗?为什么?

(二):练一练。教师适度点拨引导,强调正比例关系判断的关键。先自己独立完成,然后集体订正,说理由。

  1、判断下面各题中的两个量,是否成正比例,并说明理由。

(1)每袋大米的质量一定,大米的总质量和袋数。

(2)一个人的身高和年龄。

(3)宽不变,长方形的周长与长。

  2、根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。

  3、买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由

  4、画一画,你会有新的发现。

  彩带每米4元,购买2米、3米…彩带分别需要多少钱?

①填一填:(长度:米,价格:元)

②画一画,把上表中长度和价钱对应的点描在坐标纸上,再顺次连接起来。看发现了什么?

板书:

  正比例的意义

①两种相关联的量

②一种量扩大(或缩小)另一种量也扩大(或缩小)

③两种量中相对应的两个量的比的比值是一定的

  路程÷时间=速度(一定)总价÷数量=单价(一定)

=k(一定)

《比例的意义》教学设计 篇6

教学目标:

  1、在具体的情境中经历比例的形成过程,理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。

  2、通过自主探索发现比例的基本性质,能运用比例的性质进行判断。

  3、通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

  4、通过探索国旗中蕴含的数学知识,渗透爱国主义教育。

教学重点:

  理解比例的意义和性质。

教学难点:

  应用比例的意义和性质判断两个比能否组成比例。

教学准备:

  多媒体课件一套。

教学过程:

  一、渗透情感,导入新课

  1、媒体出示国旗画面,学生观察,激发爱国情操。

  天安门升国旗仪式

  校园升旗仪式

  教室场景

  签约仪式

  师:四幅不同的场景,都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽是多少吗?

  2、媒体出示国旗的长和宽,并提出问题。

  天安门升国旗仪式:长5米,宽10/3米。

  校园升旗仪式:长2、4米,宽米。

  教室场景:长60厘米,宽40厘米。

  签约仪式:长15厘米,宽10厘米。

  师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同点呢?

  师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?

  3、学生探索,发现问题。

  师:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?

  学生自主观察、计算,发现国旗的长和宽的比值相等。

  二、认识比例,发现特征

  1、引出比例,理解比例的意义。

  媒体出示操场上的国旗和教室里国旗长和宽。学生计算出两面国旗的长和宽的比值。

  并板书:2、4∶1、6=3/2

  60∶40=3/2

  师指出这两面国旗的长和宽的比值相等,中间可以用等号连接,并指出像这样的式子叫比例。

  并板书:2、4∶1、6=60∶40

  2、认识比例,知道比例各项的名称。

⑴学生照样子利用主题图仿写一个比例,并说出自己是怎样写出来的。

⑵学生尝试说说什么叫比例。

⑶教学比例的各部分的名称。

  自学课本第34页的第一段话,初步认识比例各项的名称。

  出示其中一个比例,指出比例各部分的名称。

  学生说说自己写的比例的各项的名称。

⑷教学比例的另一种写法,学生尝试将自己写的比例换一种写法。

⑸判断下列几个比能不能组成比例。

  媒体出示,学生判断并说出理由。

  下面哪组中的两个比可以组成比例,把组成的比例写出来。

⑴6∶10和9∶15⑵20∶5和1∶4

⑶1/2∶1/3和6∶4⑷0、6∶0、2和3/4∶1/4

⑹思考:比和比例有什么联系和区别?

  学生自主思考,集体交流,了解比例和比的联系和区别。

  3、自主练习,发现比例的基本性质。

⑴媒体出示

  8∶4=()∶()15:10=()∶412∶()=()∶5

  媒体依次出示三道题,学生独立完成并思考:为什么这样填?你有其它的发现吗?

⑵师提出问题:在一个比例中,它们项有什么特点?

⑶学生观察以上式子,自主思考,尝试发现比例的基本性质。

⑷集体交流,发现性质。

  学生自主交流,发现:在比例里,两个外项的积等于两个内项的积。

⑸观察自己写的其它几个比例,验证发现。

⑹小结性质

  学生尝试用完整的数学语言说一说自己的发现。

  媒体出示学生的发现,教师指出这就是比例的基本性质。

  三、巩固练习,提高认识

  1、基本练习

  判断,媒体出示

  应用比例的基本性质,判断下面哪组中的两个比可以组成比例。

⑴6∶3和8∶5⑵0、2∶2、5和4∶50

⑶1/3∶1/6和1/2∶1/4⑷1、2∶3/4和4/5∶5

  2、拓展练习。

  比一比,谁写得多。

  在1、2、3、4、5、6、7、8、9这九个数中,任选四个数组成比例,并说说是怎样写出来的。

  四、总结全课,升华认识

  学生回顾全课,说说比例的意义和基本性质。

板书

  比例的意义和基本性质

  2、4∶1、6=3/2

  60∶40=3/2

《比例的意义》教学设计 篇7

  教学目标

  知识目标:理解比例的意义,掌握组成比例的关键条件。

  能力目标:能正确的判断两个比能否组成比例。

  情感目标:通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

  重点解比例的意义,掌握组成比例的关键条件。

  难点正确的判断两个比能否组成比例。

  教学过程教学预设个性修改。

  目标导学复习激趣目标导学自主合作汇报交流变式训练。

  创境激疑

  一、创设情境,导入新课

  师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们对国旗都有哪些了解呢?(生自由回答)

  师:同学们都说出了自己的想法,说明你们都很热爱我们的国家,希望你们以后一定要好好学习,做一个有用的人,把我们的国家建设的更加美好!五星红旗是庄严而美丽的,并且它与我们数学也有着密切的联系,这也就是我们今天所要研究的内容:比例(板书课题:比例)

  合作探究

  二、新授(课件出示不同大小的国旗图案)

  师:画面上出现了四幅不同大小的国旗,请同学们任选两面国旗来算一算它们各自长与宽的比值是多少?然后观察结果,你能发现什么?

  (板演,观察到比值相等,教师板书:两个比相等)

  师:那我们就可以将这两个比用等号连接。(教师板书生汇报的两个相等的比)

  教师边指着这组相等的比一边说:好,像这样表示两个比相等的式子就叫做比例。(把定义补充完整)。这就是比例的意义(把课题板书完整)请同学们齐读。

  请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?(生回答,等式;有两个相等的.比)

  (教师再强调:一定是比值相等的两个比才能组成比例。)

  师:你还能从四面国旗中找出哪些比例?

  (写在练习本上,然后汇报。教师板书)

  师:我们在学习比的时候,可以把比写成分数的形式,比如:60:40=60/40,那比例也能写成分数的形式吗?怎么写?(口答)

  师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?

  从形式上区分:比由两个数组成;比例由四个数组成。

  从意义上区分:比表示两个数之间的倍数关系;比例表示两个比相等的式子。

  拓展应用下面哪些组的两个比可以组成比例?如果能,在()打对号。

  10:2和35:42()0、6:0、2和):4和3:():和12:8()

  总结小强3分钟走了180米,小刚1小时走了3、6千米。小强说他们各自所走的路程和时间的比能组成比例,小刚说不能组成比例。请问:谁说的对?

  作业布置做一做。

  板书设计比例的意义

  2、4:1、6=60:40=

  2、4:1、6=60:40

  (或)=

《比例的意义》教学设计 篇8

  教学目标

  一、知识目标

  1、使学生理解比例的意义和比例的基本性质.

  2、认识比例的各部分名称,会组成比例.

  二、能力目标

  1、使学生学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例.

  2、培养学生的观察能力和判断能力.

  三、情感目标

  1、对学生进一步渗透辨证唯物主义观点的启蒙教育.

  2、使学生感悟到美源于生活,美来自生产和时代的进步,提高审美意识

  教学重点

  比例的意义和基本性质.

  教学难点

  应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

  教学对象分析

  低年级学生思维的基本特点是:从以具体形象思维为主要形式过渡到以抽象逻辑思维为主要形式,针对这一特点,利用多媒体这一新颖、直观的现代教学手段创设引人入胜的教学情境,并通过动手操作,讨论探究,观察分析,给学生充分的时间和机会,让他们主动参与获取知识的全过程,从而培养学生问题意识、策略意识及创新意识。

  教学策略及教法设计

  教学时有意识创设情境,激发学生探索问题的欲望,不断发现问题,解决问题.通过动手操作,观察演示,小组讨论等活动,让学生运用知识和能力的迁移规律,将知识结构转化为学生的认知结构,突出学生的主体作用.

  1.多媒体教学

  运用微机精心设置问题情境,使学生自觉发现、意识到问题存在,可激活学生思维,促使问题意识的产生,又可以调动学生探索新知的积极性.

  2.动手操作法

  引导学生发现问题,提出问题,然后组织学生借助学具动手操作,寻求多种计算方法,同时运用多媒体,变静为动,直观形象,再结合语言表述,使学生的思维逐渐内化.

  教学步骤

  一、铺垫孕伏

  1、什么叫做比?

  2、什么叫做比值?

  3、求下面各比的比值:

  4、教师提问:上面哪些比的比值相等?( 和 这两个比的比值相等)

  教师: 和 这两个比的比值相等,也就是说这两个比是相等的,因此它们可以用等号连接.(板书: = )

  二、探究新知

  (一)比例的意义

  例1、一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:

  时间(时)

  2

  5

  路程(千米)

  80

  200

  1、教师提问:从上表中可以看到,这辆汽车,

  第一次所行驶的路程和时间的比是几比几?

  第二次所行驶的路程和时间的比是几比几?

  这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)

  2、教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式

  或 .

  3、揭示意义:像 = 、 这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)

  教师提问:什么叫做比例?组成比例的关键是什么?

  板书:表示两个比相等的式子叫做比例.

  关键:两个比相等

  4、练习

  下面哪组中的两个比可以组成比例?把组成的比例写出来.

  ① 和 ② 和

  ③ 和 ④ 和

  填空

  ①如果两个比的比值相等,那么这两个比就( )比例.

  ②一个比例,等号左边的比和等号右边的比一定是( )的.

  (二)比例的基本性质

  1、教师以 为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)

  2、练习:指出下面比例的外项和内项.

  3、让学生计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

  以 为例,指名来说明.

  外项积是:80×5=400

  内项积是:2×200=400

  80×5=2×200

  4、学生自己任选两三个比例,计算出它的外项积和内项积.

  5、教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质

  (板书课题:加上“和基本性质”,使课题完整.)

  6、思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

  教师板书:

  7、练习

  应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.

  三、课堂小结

  这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.

  四、巩固练习

  1、说一说比和比例有什么区别.

  比是表示两个数相除的关系,有两项;

  比例是一个等式,表示两个比相等的关系,有四项.

  2、在 这个比例中,外项是( )和( ),内项是( )和( ).

  根据比例的基本性质可以写成( )×( )=( )×( ).

  3、根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.

  (1) 和 (2) 和

  (3) 和 (4) 和

  4、下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)

  2、3、4和6

  五、课后作业

  根据3×4=2×6写出比例.

  六、板书设计

《比例的意义》教学设计 篇9

  教学目标

  1.使学生理解比例的意义,掌握组成比例的条件。

  2.使学生能正确地判断两个比能否组成比例。

  3.认识比例的各部分名称,掌握比例的基本性质。

  教学重点和难点

  比例的意义和性质的理解与应用。

  教学过程设计

  第一部分:比例的意义

  (一)复习准备

  1.求比值:

  2.请你找出比值相等的两个比。

  1.2∶0.4 24∶8 6∶2 1.2∶0.4 24∶8

  (二)学习新课

  一辆汽车第一次2小时行80千米,第二次6小时行240千米,请你说出第一次行驶路程和时间的比。

  板书:80∶2

  再请你说出第二次行驶路程和时间的比。

  板书:240∶6

  师:现在你分别求出两个比的比值。(学生口述,师板书:80∶2=40,240∶6=40)

  师:你们观察一下两个比的比值怎么样?这两个比之间有没有关系?(学生互说)

  得出:第一个比的比值是40,第二个比的比值也是40。因为比值相等,所以比就相等。(老师板书:两个比相等,可以用等号把两个比连起来。)

  教师把80∶2和240∶6中间用等号连起来,然后边指着边说:“像这样的式子在数学上是什么概念呢?这就是我们要学的新内容:比例的意义。”(老师板书课题)

  师:至于什么叫比例以及比例的各部分名称、组成比例的条件,请你结合思考题看书自学。(告诉学生页数,从第几行看到第几行。)

  思考题:

  1.什么叫比例?

  2.比例的各部分名称?

  3.组成比例的重要条件?

  采取自学→两人讨论→集体讨论。

  师再次强调组成比例的条件:

  A.必须是两个比。

  B.两个比的比值必须相等。

  C.必须是一个式子。

  最后得出:表示两个比相等的式子叫比例。(老师将板书完整化)两个比表面上看不同,其实质是相同的,也就是比值相同。那么判断两个比能不能组成比例式,关键是看比值是否相等,只要比值相等就可以组成比例。

  师:上面那些比符合比例的意义吗?能否组成比例?(学生说,老师连线或让学生连线。)

  比例还有其它书写格式吗?请同学们看,老师怎样写。

  (三)巩固反馈

  1.判断下面两个比能否组成比例?

  (1)1∶3和3∶9( )

  (2)60∶30和160∶80( )

  (4)0.2∶0.4和1.6∶4( )

  并组成比例。(学生先写再说)

  3.随意写比例,互相查看。(至少写2个)

  第二部分:比例的性质

  (一)讲授比例的性质

  让学生观察:在比例里有几个数?这几个数叫什么?这几个数有没有区别?

  学生发言,老师小结:比例是由两个比组成的,组成比例的四个数叫比例的项(老师边指边说),靠近等号的(中间的两项)两项叫内项,两端的两项叫外项。如:

  请你指出黑板上比例中的内外项。

  现在请你做一件工作:先算出两个外项的积,再算出两个内项的积。算完以后你发现什么规律?学生说算式,老师板书:

  通过以上几道题,使学生看到,在比例里两个外项的.积等于两个内项的积。这个规律我们把它叫做比例的性质。(老师把课题补充完整。)

  师:这个规律是在什么前提下成立的呢?必须是在比例里,才能两个外项积等于两个内项的积。

  师:你们说说什么叫比例的性质?这是这节课要掌握的第二个内容。

  师:比例写成分数形式时,比例的性质如何理解呢?

  80×6=2×240 1.2×8=24×0.4

  即等号两端的分子、分母分别交叉相乘,积相等,用字母这样表示:

  (二)课堂练习

  (放幻灯片)

  (1)用比例性质验证你所写的比例是否正确?

  (2)用2,8,5,20四个数组成比例。

  (3)填适当的数。

  3∶18=5∶( )

  为什么填30?有几个答案?

  4.8∶0.6=( )∶2

  为什么只能填16?

  12∶( )=( )∶5

  有几个答案?

  (4)在比例中两个外项的积是80,那么这个比例中的内项积一定是几?为什么?

  (5)在比例中两个内项分别是45和2,那么这个比例中的两个外项积应该是几?为什么?

  (三)课堂总结

  (学生小结这节课所学内容。)

  1.质疑:(学生、老师质疑)(幻灯片)

  ①表示两个相等的式子叫比例。对吗?

  2.思考题:

  (1)根据30×3=45×2写比例式。

  (2)求x:

  12∶30=8∶x

  能不能应用今天所学的内容解决?怎么解决?比例的性质还可以应用在什么问题上?

  课堂教学设计说明

  本教案是在学生学过比的意义和性质的基础上设计的,它包括比例的意义和组成比例的各部分名称,比例的基本性质及应用比例的基本性质解比例问题。本教案分为两部分,先教授比例的意义,再教授比例的性质。

  第一部分,首先通过复习求比值,找出比值相等的比,为教学比例的意义做好铺垫工作,然后再通过例题,用汽车两次行驶路程和时间的比,得出两个比的比值相等,从而概括出比例的意义,再利用比例意义判断两个比能否组成比例,老师安排了让学生写出比值相等的比,再组成比例,还安排了四个数组比例,目的在于加深对比例意义的认识和理解。

  第二部分,教学比例的性质。首先认识比例的各部分名称,认识内项和外项,然后引导学生计算出在比例中两个外项积和两个内项积,从而发现其中的规律,下面通过把比例写成分数形式,让学生形象地看到两个外项积和两个内项积就是将比例中等号两端的分子和分母分别交叉相乘,积相等,最后得出比例的性质。让学生应用比例的性质验证自己写的比例成立不成立,使学生明白,验证比例式是否成立,除了求比值的方法,也可以用求两个外项积和两个内项积是否相等的方法。课上安排应用比例性质进行填空练习,进一步加深学生对比例性质的认识与掌握。

  另外,在学生没有提出问题的情况下,老师出了两道题,目的是巩固对比例意义的认识与理解,最后老师出的思考题,为解比例做铺垫工作。

  在整个教学过程中,老师要重视学生的全面参与,通过学生动手、动脑、观察、计算、自学与讨论等活动,使学生学会比例的意义和性质。老师可根据本班学生的实际情况可做些调整,这一教学过程的设计,是符合学生的认知规律的,按照这个程序教学是会收到较好的教学效果的。

  板书设计

《比例的意义》教学设计 篇10

  一、教学目标

  1.使学生理解并掌握反比例函数的概念

  2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式

  3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想

  二、重、难点

  1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式

  2.难点:理解反比例函数的概念

  3.难点的突破方法:

  (1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解

  (2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x≠0的一切实数;看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k≠0),比较二者解析式的相同点和不同点。

  (3)(k≠0)还可以写成(k≠0)或xy=k(k≠0)的形式

  三、例题的意图分析

  教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。

  教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。

  补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的`函数关系式,有一定难度,但能提高学生分析、解决问题的能力。

  四、课堂引入

  1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?

  2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?

  五、例习题分析

  例1.见教材P47

  分析:因为y是x的反比例函数,所以先设,再把x=2和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。

  例1.(补充)下列等式中,哪些是反比例函数

  (1)(2)(3)xy=21(4)(5)(6)(7)y=x-4

  分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式

  例2.(补充)当m取什么值时,函数是反比例函数?

  分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误

《比例的意义》教学设计 篇11

  由于新教材把“比”的内容前移至十一册,学生难免会有遗忘和生疏,所以在教学时我适当增加“比”的复习分量,除了教材上的复习内容,还多加了几道复习题。

  新授例1后得到两个相等比80:2=200:5,此时,应当再次指出:这个等式和复习题后面列出的等式都是比例。那么什么叫做比例呢?

  引导学生观察归纳,一般都可以根据几个式子共有的特征得出结论。虽然班上有些学生自己得出的结论,不够严密,我还是加以肯定和鼓励。那么在此基础上引导学生再来讨论“两个比能否组成比例,主要是看什么?”这样的问题,自然会水到渠成。

  这样不仅加强知识间的联系,而且减缓学生认知过程的坡度,学生在逐步深入理解“比”的.基础上再去学习“比例”的知识,会轻松得多。

  《比例的基本性质》的推导是这节课的重点,也是难点。但是我们教学时不是用数学证明的方法得到比例的基本性质的,而是引导学生研究具体比例的外项积和内项积的关系,在此基础上归纳得出比例的基本性质。为了使归纳的结论具有说明力,我让学生在草稿本上任意写一个比例,并研究两内项积与两外项积有怎样的关系,再分小组讨论。

  让学生通过自己的研究观察得出,不论怎样的比例,它的外项与内项积都相等,并让学生自己用字母表示出来。

  这节课学生不仅掌握了一个“基本性质”,更重要的是向学生渗透了研究问题的方法,学生的主体意识得以培养和发挥。

《比例的意义》教学设计 篇12

教材分析

  这部分内容是在学生已经学习了比的意义,比的化简、求比值和比的应用的基础上学习的。通过本节课的学习,学生将掌握比例的意义,对学生学习比例的基本性质和正、反比例的意义和应用,乃至在初中继续学习有关正、反比例知识打好基础。

学情分析

  1、本班现有学生92人,男生49人,女生43人。

  2、本班班额大,学生基础较差,所以我将比例的意义和基本性质这一学时的内容分成了两课时,本节课主要学习比例的意义。

  3、本节课我准备从生活情境出发,为学生创设探究学习的情境;联系生活实际,让学生体会数学与生活的密切联系;改变学生的学习方式,运用合作学习,培养学生协作能力;运用多媒体教学手段增加教学的新颖性,引导学生以各种感官参与学习的全过程。

教学目标

  1、知识与技能:理解比例的意义,认识比例各部分的名称。

  2、过程与方法:让学生经历探索比例的意义的过程,并能运用比例的意义,判断两个比能否组成比例,会组比例。

  3、情感态度与价值观情感目标:培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。

教学重点和难点

  1、掌握比例的意义。

  2、应用比例的意义判断两个比能否组成比例,并能正确地组成比例。

  3、能根据一个比例写几个不同的比例。

教学过程

  教学环节 教师活动 预设学生行为 设计意图

  一、复习

  1、什么叫比?怎样表示比?一辆汽车1小时行60千米,2小时行120千米,3小时行180千米,分别说出所行路程与所用时间的比,这些比表示的意义是什么?

  2、怎样求比值?求下面各比的比值,你发现了什么?

  20∶∶∶10生回答。

  学生回答后,独立求出各比值,并交流汇报。复习旧知,为新知探究奠定基础。

  揭示

  课题这节课我们在比的知识基础上,进一步学习新知识。

  揭示课题——比例的意义。学生打开数学课本48页。开门见山,直奔主题。

  探究

  比例的意义

  1、课件出示

  例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。

  列表如下:

  竹竿长(m)23...... 影子长(m)69......

  2、你能写出多少个有意义的比?并求出它们的比值。

  3、观察这些比,把能用等号连接的比用等号连接起来。

  4、教师板书

  3∶2=9∶6

  2∶6=3∶9

  强调:这些都是比例。

  引导学生用自己的语言说一说什么是比例。比例就表示两个比的比值相等的式子。

  5、2∶9和3∶6能组成比例吗?你是怎么知道的?

  6、指导学生说出“判断两个比能不能组成比例,要看他们的比值是否相等。”

  1、学生讨论,然后写出比,完成后汇报,并随意找出几个学生的作业进行展示。

  2、学生试写:

  2:3=6:9

  2:6=3:9

  3、学生合作探究:什么是比例?

  4、学生小组讨论:2∶9和3∶6能组成比例吗?并说出理由。

  1、生活情境导入,增强学生的学习兴趣,调动学生主动参与。

  2、让学生分享在主动参与、探究中获取知识的愉悦心情。

  3、学生在合作探究和小组讨论时,增强合作意识,培养自己解决问题的能力。

  认识比例的各个项

  1、课件出示:在一个比例中两端的两项叫外项,中间的两项叫内项。

  要求学生依据定义,分别找出3∶2=9∶6和2:6=3:9的内项和外项。

  介绍分数形式的比例写法。

  学生小组合作探究,找出3∶2=9∶6和2:6=3:9

  的内项和外项。加深认识,学以致用。

  五、巩固练习

  1、请同学们用比例的意义判断一下,0。4∶25能否和1。2∶75组成比例?为什么?

  2、说一说比和比例有什么区别。

  3、在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。

  4、用下面的四个数组成比例:2,3,4和6(能组几个就组几个)。你能否写出几个不同的比例?

  5、下面的四个数可以组成比例吗?若不能,改变其中的任何一个数,使其能组成比例。2、3、4、5试试看,相信你一定能完成?

  1、学生独立完成。

  2、汇报答题情况。

  检测学生学习效果。

  六、比与比例的区别

  1、a÷b=a:b比就表示两个数相除,它们的商叫比值,应用比的意义可以求比值。

  2、比例a:b=c:d表示两个比相等的式子,叫做比例。应用比例的意义可以判断两个比是否可以组成比例。学生自己说出几个不同的比和比例,对比理解。加强新旧知识的联系和区别,巩固新知识。

《比例的意义》教学设计 篇13

教学目标

  1、理解比例的意义,能运用比例的意义判断两个比能否组成比例,并会组比例。

  2、探索国旗中蕴含的数学知识,渗透爱国主义教育,提高学生的认知能力。

  3、体验获得成功的乐趣,建立学好数学的自信心。

教学重难点

  教学重点:理解比例的意义。

  教学难点:应用比例的意义判断两个比能否组成比例。

教学工具

  ppt课件

教学过程

  请同学们回忆一下上学期我们学过的比的知识,谁能说说:

  1、什么叫做比?比的书写形式有哪些?

  2、什么叫做比值?

  一、情境引入

  同学们,每个星期一的早上我们学校都会举行什么活动?我们一起说吧。

(生齐声说:升旗仪式)

  课件出示:升旗仪式的情景

  你们对这个情景已经非常熟悉了,你们对这面国旗的长和宽分别是多少了解吗?

  不了解是吧?那老师告诉大家:

  课件出示并介绍:我们这面国旗的长是米、宽是米。

  提问:你除了在升旗仪式上还在生活中的哪些地方加到过国旗呢?

  指名回答(学校周一升旗时操场上的国旗、会议桌上的国旗、教室后面的国旗、)

  在很多的场合像我们的教室、还有大型的庆典活动上我们都可以看到庄严的国旗。

  那么你们知道这些国旗的尺寸大小吗?追问:知道不知道?

  那么下面呢我们看一下老师收集到的一些信息。

  课件出示不同场合下的国旗

  课件出示:不同场合下的国旗

  提问:谁能用最简短的语言描述一下这四面国旗分别出现在什么地方?并读出它的长和宽(1)天安门广场的国旗,长5米,宽10/3米。

(2)学校的国旗长米,宽米。

(3)教室里面的国旗长60厘米,宽40厘米。

(4)会议桌上的国旗长15厘米,宽10厘米。

  那我们现在看到的这些国旗的大小都一样吗?

  师小结:在不同的场合的国旗的大小是不一样的。

  追问:它们的形状相同吗?(相同)

  尽管它们的大小不一样,但形状相同。我们看上去每面国旗在我们的眼中还是那么的庄严和美丽,那么的和谐和统一是吗?那么到底按照怎么样的标准才能制作出这种大小不同、形状相同的国旗呢?其实每面国旗的里面是否也蕴含着我们的数学知识呢—比例!(板书课题:比例)下面我们就一起来研究这个问题。

  二:探究新知

  下面请同学们拿出练习本,听清要求:

  先写出图中国旗长与宽的比然后再求出它的比值。

  学生自主计算,教师巡视。

  提醒:同学们在计算时,一定要认真。注意计算结果的准确性。

  哪个同学愿意和大家来分享你的成果?和大家勇敢的分享你的成果。指名回答

  根据学生汇报并分类板书。

  5:10/3=3/2

::16=3/2

  60:40=3/2

  15:10=3/2

  大家同意他的计算结果吗?

  师:请同学们观察黑板上的计算结果,看看有什么发现。

  指名回答

  师小结:说的非常好,这是个很重大的发现,这四面国旗它们的长与宽都有变化,但比值都是3/2 。其实呀不止这两面红旗长与宽的比是3:2,所有国旗长与宽的比的比值都是3/2,这在国旗法中有明文规定的

  板书:5:10/3 :

  师:像这样的两个比,它们的比值相等的,也就说这两个比相等,那么我们可以用什么符号把它们连接起来变成一个等式?

  来大家一起把这个等式念一下(学生齐读)5:10/3=:

  提问:那么谁能根据这四个5:10/3=3/2

:=3/2

  60:40=3/2

  15:10=3/2

  相等的比也像老师一样写一个等式呢?

  指名回答并根据汇报板书

  我们写的这些等式数学上把它叫做比例。谁能根据自己的理解说说什么叫做比例?指名回答

  老师明确:我们把表示两个比相等的式子叫做比例。(重点强调比值相等)

  大家齐读两遍,开始。

  学生齐读

  这就是我们今天要学习的内容—比例的意义

  板书课题

  提问:在读了比例的意义以后,在这句话里你认为那些字非常重要呢?

  指名回答

  教师明确:两个比相等并在这句话的字的下面标上黑点

  表示两个比相等的式子叫做比例。

  2、深入理解比例的意义

  那大家看一看:15∶3和60∶12能组成比例吗?你是怎样判断的?对,15∶3的比值是5;60∶12的比值也是,所以说15∶3和60∶12能组成比例。

  那同学们,要判断两个比能不能组成比例,关键是看什么啊?对,判断两个比能不能组成比例,关键要看它们的比值是否相等。

  追问并出示课件:那同学们,要判断两个比能不能组成比例,关键是看什么啊?

(指名回答)

  大家同意吗?

  对学生的回答进行评价

  追问:如果不相等的话,能组成比例吗?

  教学比例的另外一种写法:同学们知道比还有另外一种写法(分数的写法)像:=15:10这个比例还可以写成/=15/10,这是两种不同的写法!

(3)、合作探究:在四面国旗的长和宽的数据中,你还能找出哪些比可以组成比例??

  请同学们在小组内讨论讨论!看哪个小组的同学找的多,开始吧!

  班内交流:哪位同学说一说你们小组找出来哪些比例?

  同学们真了不起,从这四面大小不同的国旗中,就组成了这么多不同的比例。比老师找的还多呢,请看屏幕

  展示:: = 60:40 (长:宽=长:宽)

: = 40:60 (宽:长=宽:长)

:60 =:40 (长:长=宽:宽)

  这里能组成的比例还有很多,同学们课下再找出其他的比例吧!

  2、比和比例的区别?

(1)同学们,以前学了比,现在又学比例,那你觉得比和比例一样吗?现在老师有个问题需要同学们帮忙解决一下,请看屏幕,“比和比例有什么区别?”下面请同学们小组内探讨,一会儿告诉老师好吗?好,开始吧!

(2)交流:谁愿意来说一说你们小组讨论的结果?

(生答)

(3)展示:说的太好了,比由两个数组成,是一个式子,表示两个数相除。比例由四个数组成,是一个等式。它是表示两个比相等的式子。,请看屏幕上的表格

  三、智慧城堡

  师小结:今天这节课同学们表现得特别好,我们一起去智慧城堡闯闯关同学们有没有信心?

  四、谈收获

  这节课,大家都非常积极和认真,老师相信同学们的收获肯定很多,那谁想来和大家分享一下你的收获呢?

  五、全课总结:

  师小结:比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。

课后小结

  比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。

《比例的意义》教学设计汇编13篇

将本文的Word文档下载到电脑,方便收藏
推荐度:
点击下载文档文档为doc格式