《乘法分配律》教学反思
《乘法分配律》教学反思(汇总12篇)
下面是范文网小编收集的《乘法分配律》教学反思(汇总12篇),欢迎参阅。
《乘法分配律》教学反思1
教材提供了这样一个主体图:春季里,同学们开展植树活动,一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。需要解决的问题是:一共有多少人参加植树活动?学生会用两种不同的方法分别列出算式,接着通过计算发现,两个算式可以用=连接,即25(4+2)=254+252,从而通过比较等号两边两个算式的不同与相同,概括出乘法分配律。当我在一个班按照此教学设计教学后,我发现效果并不理想,表现有两点:
①有些学生只是机械的记忆了乘法分配律的公式,例如看到3544不能想到3540+354;
②由于没有真正理解乘法分配律的内涵,所以完全不能理解其逆应用以及当两个数的差乘一个数时应用乘法分配律。如:他们认为6464+3664(64+36)64;265(105-5)=265105-2655。
针对此情况,我重新设计了教案。增加了一个问题:负责挖坑、种树的'同学比负责抬水、浇水的同学多多少人?这样学生又列出另外两个算式,通过计算后用等号连接: 25(4-2)=254-252,接下来,我引导学生观察、对比两组算式,充分地去发现相同点与不同点。这样一来,促使了学生去寻找事物之间的联系,抓住本质,寻找共同点,促进交流,顺利地实现了自我构建和知识创造。学生的发现自然也就更丰富、更有深度了:无论是两个数的和还是两个数的差去乘一位数,都可以先把他们与这个数分别相乘,再相加或者再相减。此外,我还引导学生从右到左的观察等式,尝试用乘法的意义去理解乘法分配律,即:4个25加2个25就等于(4+2)个25,4个25减2个25就等于(4-2)个25,这样帮助学生突破乘法分配律逆应用这个教学难点。
我通过对两个班不同的教学设计,感受到:认真钻研教材,多动心思,深入挖掘教材中的宝贵资源,会使教材的内涵更有广度和深度,也为培养和发展学生思维的灵活性,提供了更广阔的空间。
《乘法分配律》教学反思2
《乘法分配律》是本章的难点,它不是单一的乘法运算,还涉及到加法运算。教材对于这部分内容的处理方法与前面讲乘法结合律的方法类似。在设计本教案的过程中,我一直抱着“以学生发展为本”的宗旨,试图寻找一种在完成共同的学习任务、参与共同的学习活动过程中实现不同的人的.数学水平得到不同发展的教学方式。结合自己所教案例,对本节课教学策略进行以下几点简要分析:
一、教师要深入了解各层次学生思维实际,提供充分的信息,为各层次学生参与探索学习活动创造条件,没有学生主体的主动参与,不会有学生主体的主动发展,教师若不了解学生实际,一下子把学习目标定得很高,势必会造成部分学生高不可攀而坐等观望,失去信心浪费宝贵的学习时间。以往教学该课时都是以计算引入,有复习旧知,也有比一比谁的计算能力强开场。我想是不是可以抛开计算,带着愉快的心情进课堂,因此,我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。这样所设的起点较低,学生比较容易接受。
二、让学生根据自己的爱好,选择自己喜欢的方法列出来的算式就比较开放。学生能自由发挥,对所学内容很感兴趣,气氛热烈。到通过计算发现两个形式不一样的算式,结果却是一样的。这都是在学生已有的知识经验的基础上得到的结论,是来自于学生已有的数学知识水平的。
三、总体上我的教学思路是由具体——抽象——具体。在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,老师都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。
四、在学习中大胆放手,把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去发现规律,验证规律,表示规律,归纳规律,应用规律。
在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还不够,因此在归纳乘法分配律的内容时,学生难以完整地总结出乘法分配律,另外还有部分学困生对乘法分配律不太理解,运用时问题较多等。
《乘法分配律》教学反思3
乘法分配律是四年级学习的重点,也是难点之一。它是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的,是一节比较抽象的概念课,教学是我根据教学内容的特点,为学生提供多种探究方法,激发学生的自主意识。
一、在对本节课的教学目标上,我定位在:
(1)通过学生比赛列式计算解决情景问题后,观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。
(2)初步感受乘法分配律能使一些计算简便。
(3)培养学生分析、推理、概括的思维能力。
二、结合自己所教案例,对本节课教学策略进行以下几点简要分析:
1、总体上我的教学思路是由具体——抽象——具体。
在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,老师都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。
2、从学生已有知识出发。
教师要深入了解各层次学生思维实际,提供充分的信息,为各层次学生参与探索学习活动创造条件,没有学生主体的主动参与,不会有学生主体的主动发展,教师若不了解学生实际,一下子把学习目标定得很高,势必会造成部分学生高不可攀而坐等观望,失去信心浪费宝贵的学习时间。以往教学该课时都是以计算引入,有复习旧知,也有比一比谁的计算能力强开场。我想是不是可以抛开计算,带着愉快的心情进课堂,因此,我在一开始设计了一个植树的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。这样所设的起点较低,学生比较容易接受。
3、鼓励学生大胆猜想。
猜想是科学发现的前奏。学生的学习活动中同样不能没有猜想,否则,主体性探究 活动便缺少了内在的动力,自主学习的过程也成了失去目标的无意义操作。学生看到加法交换律和加法结合律,从直观上产生了关于乘法运算定律的猜想。于是,接下来的举例就成了验证猜想的必需,无论猜想的结论是“是”还是“非”,学生的思维一直是活跃着的,对学生都是有意义的。这个过程是教会学生 学习与掌握探索方法的过程,是培养学生学习品格的过程。
4、师生平等交流。
教学过程是师生共创共生的过程,新课程确定的培养目标和所倡导的学习方式要求 教师必须转换角色。改变已有的教学行为,教师必须从“师道尊严”的架子中走出来,与学生平等地参与教学,成为共同建构学习的参与者。在以上教学片断中,教 师让学生充分经历学习过程,调动学生学习的热情:猜想——倾听——举例——验证,在 欣赏学生的“闪光”处给学生“点拨”。教师没有过多的讲授,也没有花大量的时间去 刻意的创设教学情境,只是做唤醒学生主体意识的工作,引导学生大胆猜想,大胆表达。学生借助已有的'知识经验,自主解决新问题,使学生的主体地位得以体现。
5、将学生放在主体位置。
把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去尝试解决问题。在探究这一系列的等式有什么共同点的活动中,学生涌现出的各种说法,说明学生的智力潜能是巨大的。所以我在这里花了较多的时间,让学生多说,谈谈各自不同的看法,说说自己的新发现,教师尽可能少说,为的就是要还给学生自由探索的时间和空间,从而能使学生的主动性、自主性和创造性得到充分的发挥。
三、教学中的不足和改进之处:
在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还不够,因此在归纳乘法分配律的内容时,学生难以完整地总结出乘法分配律,另外还有部分学困生对乘法分配律不太理解,运用时问题较多等,今后的工作中,要多向以下几个方面努力:
1、多听课,多学习。尤其是优秀教师的课,学习他们的新思想、新方法,改善课堂教学,提高课堂教学艺术和课堂效率。
2、加强同科组教师之间的沟通和交流,相互学习,取长补短,共同进步。
3、认真钻研教材,把握好教材的重点、难点、关键点、易混点,上课时才能做到心中有数,游刃有余。
《乘法分配律》教学反思4
《乘法分配律的运用》教学设计及反思
教学目标
(一)使学生学会用乘法分配律进行简算,提高计算能力.
(二)培养学生灵活运用乘法运算定律进行计算的习惯.
教学重点和难点
能比较熟练地应用运算定律进行简算是教学的重点;反向应用乘法分配律是学习的难点. 教学过程设计
(一)复习准备
1.口算:
(二)学习新课
我们已经学过乘法分配律,今天继续研究怎样应用乘法分配律使计算简便.(板书:乘法分配律的应用)
1.创设情境,激发学生学习积极性.
出示102×( ).
请同学任意填上一个两位数,老师可以迅速说出它的得数,而不用笔算.
2.教学例6:用简便方法计算.
(1)计算102×43.
这是一道两位数乘三位数的乘法,用笔算比较麻烦.想一想,能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?
经过讨论后,可能出现两种情况:一种是把原式改写为(100+2)×43,然后按乘法分配律进行计算;一种是把原式改写成102×(40+3).不要简单的否定,可以让学生用两种方法都做一
做,对比一下,找出哪种方法简便.
在此基础上引导学生观察这类题目的特点,以及怎样应用乘法分配律,从而使学生明确:“两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.
(2)计算102×24.
订正时说明怎样简算的?根据是什么.
(3)计算9×37+9×63.
启发提问:
①这类题目的`结构形式是怎样的?有什么特点?
②根据乘法分配律,可以把原式改写成什么形式?这样算为什么简便?
在学生充分讨论的基础上,师板书:
提问:这题能简算吗?什么地方错了?应怎样改?
启发学生明确:题里两个乘式没有相同的因数.应该有一个相同的因数,另外两个因数加起来应是能凑成整十、整百、整千的数.
2.根据乘法分配律把相等的式子用“=”连接起来.
讨论:2,3两题为什么不相等?要使等号两边式子相等、符合乘法分配律的形式,应该改哪个地方?
在讨论基础上得出:
第2题,如果左边算式不变,右边算式应改为35×12+45×12,使两个加数分别与同一个数相乘;如果右边算式不变,两个积里有相同的因数45,把相同的因数提到括号外面,两个不同的因数就是两个加数,改为(35+12)×45.
第3题右边两个积里相同的因数是4,不同的因数是11和25,应改为(11+25)×4.因此
要特别注意:括号里的每一个加数都要同括号外面的数相乘;反过来,必须是两个积里有相同的因数,才能把相同的因数提到括号外面.而三个数连乘则是可以改变运算顺序,它是乘法结合律.必须要掌握这两个运算定律的区别.
(四)作业
练习十四第5~10题.
教学反思:本节课从学生实际出发,创设了具体的生活情境,引导学生开展观察、猜想、举例验证、交流等活动,从激活学生已有的知识经验和探究欲望入手,引导学生主动参与数学的学习过程,从而发展学生数学思维数学能力,在学习过程中学会学习,学会与人交流合作。新理念还体现不够,学生的积极性没有充分调动起来。
《乘法分配律》教学反思5
乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。它的教学重点是让学生感知乘法分配律,知道什么是乘法分配律,难点是理解乘法分配律的意义,并会用乘法分配律进行一些简便运算。所以本堂课我通过口算、读算式、写类似算式等多种方式让学生去感知乘法分配律,最后由学生总结出乘法分配律概念。本堂课我感到比较满意的地方,就是把课堂的主体权交给了学生,学生们都很主动积极的参与到学习中来,可是不足之处颇多。
一、本课堂我的教学程序是:先让学生独学“学一学”部分的6个问题,第1、2个问题根据情景图上所给的信息估算并列出算式:(4+2)×25和4×25+2×25;第3个问题让学生观察这两个算式的特点;第4个问题根据你的发现完成填空。25×(40+4)=25×()+25×()、65×17+35×17=(+)×()(意图是让学生体验乘法分配律);第5个问题试着举出类似的例子;第6个问题试一试:你可以用a、b、c分别表示三个数,写出你的发现吗?(a+b)×c=()×()+()×()。独学完六个问题后,学生通过群学和小组在全班的展示,进一步达成学习目标。接下来,通过练习检测学生对乘法分配律的理解和应用。最后通过两道练习题对所学内容进行了延伸。((1)28×18-8×28、(2)25×99)
二、不足之处:
1、在要求同学们去总结出乘法分配律的概念时老师没有很好的引导,导致同学对乘法分配律特点的认识比较模糊。
2、在学生总结出乘法分配律的概念时,我只是一笔带过的把乘法分配律通过课件再展示给学生们看了一遍,没有反复强调乘法分配律的特点,导致学生没有较好的掌握乘法分配律。
3、课堂用语不够简洁。
三、结合学生的掌握情况我觉得教学此内容需要注意以下几点:
1、区分乘法结合律与乘法分配律的特点,多进行对比练习。
乘法结合律的.特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?
2、学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。
如:计算125×88;101×89你能用几种方法?125×88①竖式计算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89①竖式计算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到“用简便算法进行计算”成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。
3、多练。
针对典型题目多次进行练习。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。
《乘法分配律》教学反思6
乘法分配律的教学是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。故而,对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证……。
现在的课程改革重点之一就是如何促进学生学习方式的变革,让他们可以用自己的眼睛去观察,用自己的脑子去思考,用自己的语言去表述,成为一个独特的`个体。并强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力方面得到进步和发展。本着对新课标的学习和认识,我对“乘法分配律”这一堂课在实践理念方面作如下的探索。
1.在对本节课的教学目标上,我定位在:
(1)通过学生比赛列式计算解决情景问题后,观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。
(2)初步感受乘法分配律能使一些计算简便。(3)培养学生分析、推理、概括的思维能力。
2.在本节课的教学过程的设计上,我尽量想体现新课标的一些理念。注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。在课的开始,我通过口头讲故事创设情境“森林超市”,“招聘广告”,设置悬念,激发学生的学习欲望和学生学习数学的兴趣:你们去过森林超市吗?想不想去看一看?小狗开了一家森林超市,想通过招聘广告应聘一名营业员呢!我们一起来看一看。小兔、小猪看到广告后,前来应聘,小熊决定进行考试过三关,择优录取。小狗还想邀请同学们一起参加这个活动,你们愿意吗?学生已迫不及待地说想。
接着我分别让班上的一组、二组分别和三组、四组扮演小猪和小兔进行解题比赛,学生学生们积极性极高并争先恐后地做题,同时让学生说说你是怎么做的?学生尝试通过不同的方法先后得出:
(1)50×8+125×8 =400+1000=1400(元),(50+125)×8=175×8=1400(元);
(2):(55+45)×5 =100 ×5 =500(元),55×5+45×5=275+225=500(元);
(3)15×4+3×4 =60+12=72(元),(15+3)×4=18×4=72(元)。
此时教师让学生观察通过不同的计算方法得到了相同的结果,这两个算式用“=”连接。通过不同计算得到相同的结果,让学生从中初步感受了乘法分配律的模型。为了让学生切实体会生活中确实有乘法分配律的知识。在此我又设置了一个问题:上面两题的结果,左边和右边的式子也有相同的形式,这里是否存在着规律?让学生带着一点疑惑,又急着想证明的愿望继续探究。这时学生心中已具有了乘法分配律的模型。当学生有了上面的真实感受,让学生列举出类似的等式已水到渠成。让学生观察刚才得到的一系列等式,小组讨论:从这些等式中你发现了什么规律?并要求同桌尝试合作学习进行一人任意找三个数写出等号左边的式子让另一个写出等号右边的式子,几题过后再交换写式子,让他们亲自感受乘法分配律,从而概括出乘法分配律。
3、在本课的练习设计上,我力求有针对性,有坡度,同时也注意知识的延伸。针对平时学生练习中的错误,在判断题中我安排了(25×7)×4=25×4+7×4,让学生通过争论明白当(25×7)×4时用乘法结合律简算;当(25+7)×4时用乘法分配律简算。在填空题目中,我设计了
①(10+7)×6=()×6 +()×6 ;
②8×(125+9)=8×()+8×();
③7×48+7×52=()×(+)
通过练习让学生更深入地理解乘法分配律的概念,也为后面利用乘法分配律进行简算打下伏笔。
总之,在本堂课中新的教学理念有所体现,但在具体的操作中还缺乏成熟的思考,对学生的积极性没有充分调动起来,而且在生活情境的创设中对情境的趣味性、兴趣性、情境性不能很好的体现,情景创设题目有点多,需减少一题,留给学生思考的时间还不够。这一系列问题有待我在今后的教学过程中不断的改进和提高。最后,衷心地感谢各位领导的指导并提出建议!
《乘法分配律》教学反思7
乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律并能初步应用这些定律进行一些简便计算的基础上进行教学的。乘法分配律是本单元教学的一个重点,也是本单元内容的难点,因为乘法分配律不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。
上课时,我以轻松愉快的闲聊方式出示我们身边最熟悉的教学资源,以教室地面引出长方形面积的计算,两种方法解决问题,得出算式:(8+6)×2=8×2+6×2,从上面的观察与分析中,你能发现什么规律?通过观察算式,寻找规律。让学生在讨论中初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?此时,我不是急于告诉学生答案,而是让学生自己通过举例加以验证。学生兴趣浓厚,这里既培养了学生的猜测能力,又培养了学生验证猜测的能力。
这堂课由具体到抽象,大多需要学生体验得来,上下来感觉很好,学生很投入,似乎都掌握了,可在练习时还是发现了一些问题。如:学生在学习时知道“分别”的意思,也提醒大家注意,但在实际运用中,还是出现了漏乘的现象。针对这一现象我认为在练习课时要加以改进。注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。乘法分配律在乘法的运算定律中是一个比较难理解的定律,通过这一节课的学习,学生对乘法分配律的大致规律能理解,也能灵活运用,但是要求用语言来归纳或用字母表示乘法分配律的`规律,有部分学生就感到很为难了。感觉他们只能意会不能言传。课本中关于乘法分配律只有一个求跳绳根数的例题,但是练习中有关乘法分配律的运用却灵活而多变,学生们应用起来有些不知所措,针对这种现状,我把乘法分配律的运用进行了归类,分别取个名字,让学生能针对不同的题目能灵活应用。
乘法分配律大致上有这样三类:
一、平均分配法。如:(125+50)*8=125*8+50*8.即125和50要进行平均分配,都要和8相乘。不能只把其中一个数字与8相乘,这样不公平,称不上是平均分配法,学生印象很深刻,开始还有部分学生只选择一个数与8相乘,归纳方法后学生都能正确应用了。
二、提取公因数法。如:25*40+25*60=25*(40+60)解题关键:找准两个乘法式子中公有的因数,提取出公因数后,剩下的另一个数字该相加还是该相减,看符号就能确定了。
三、拆分法。如:102*45=(100+2)*45=100*45+2*45这类题的关键在于观察那个数字最接近整百数,将它拆分成整百数加一个数或者整百数减去一个数,再应用乘法的分配率进行简算。有了归类,学生再见到题目就能依据数字或运算符号的特征熟练进行乘法分配律的简算了。
《乘法分配律》教学反思8
怎样才能化解乘法分配律的教学难点,我想,最终还得在情境中体验从乘法的意义上去理解。
于是,我在教学时创设了许多的生活情境,让学生多次的感悟和体验,学生从意义上有了较好地理解,比如:6×12+4×12,可以让学生理解成6个12加4个12共10个12,所以可以这样得出:6×12+4×12=(6+4)×12。
从意义上的.理解使学生最终摆脱了因强记模式而不会解的题,如:99×99+99,学生可以轻松地说出99个99加上1个99,一共100个99,99×99+99=100×99=9900。
《乘法分配律》教学反思9
本节课主要让学生充分感知并归纳乘法分配律,理解其意义。教学中,我从解决实际问题(买衣服)引入,通过交流两种解法,把两个算式写成一个等式,并找出它们的联系。让学生初步感知乘法分配律的基础上再让学生举出几组类似的算式,通过计算得出等式。
在充分感知的基础上引导学生比较这几组等式,发现有什么规律?
这里我化了一些时间,我发现学生在用语言文字叙述方面有些困难,新教材上也没有要求,因此,只要学生意思说到即可,后来,我提了这样一个问题,你能用自己喜欢的'方式来表示你发现的规律吗?学生立即活跃起来,纷纷用自己喜欢的方式来阐明自己发现的规律:有用字母的,有用符号的,大部分学生会说,没问题。对于应用这一乘法分配律进行后面的练习还可以。
如:书上第55页的第5题,学生都想到用简便方法去列式计算。整节课,学生还是学的比较轻松的。
《乘法分配律》教学反思10
《乘法分配律》是本章的难点,它不是单一的乘法运算,还涉及到加法运算。教材对于这部分内容的处理方法与前面讲乘法结合律的方法类似。通过观察几组数目不同的算式,引导学生发现规律,然后归纳、总结,用语言表述出来。在教学时,我也是按照教学参考书的建议安排教学过程的。先复习乘法的交换律和结合律,接着导入新课。通过
(18+7)×6○18×6+7×6、20×(15+90)○20×15+20×3
让学生观察、分析、思考、归纳,最后在教师的引导下总结出乘法分配律并加以运用。
教学过程中,导课比较快,在归纳乘法分配律的内容时,主观上是时间紧张,可课后想想,实际上是引导不到位。课堂上学生气氛不活跃,思维不积极,难以完整地总结出乘法分配律。结果,学生对乘法分配律不太理解,运用时问题较多。如当天在作业时出现的'问题就比较多:45×103有三分之一的学生直接乘,不会简便;尤其是计算59×21+21时,学生发现不了它的特点,不会运用乘法分配律,可以说,本节课上得不是很成功。
今后的工作中,要多向以下几个方面努力:
1.多听课,多学习。尤其是青年教师的课,学习他们的新思想、新方法,改善课堂教学,提高课堂教学艺术和课堂效率。
2.加强同同课教师之间的沟通和交流,相互学习,取长补短,共同进步。
3.认真钻研教材,把握好教材的重点、难点、关键点、易混点,上课时才能做到心中有数,游刃有余。
《乘法分配律》教学反思11
乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是所有运算定律中变化最多的,因此它是学生最难理解与运用的定律。因此我在教学中让学生在不断的感悟、体验中理解乘法分配律,从而概括出乘法分配律。
一、在对本课的教学目标上,我定位在:
(1)从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。
(2)渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的.能力,提高数学的应用意识。
二、在本课教学过程的设计上
我尽量想体现新课标的一些理念,注重从实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。顺延之前学习乘法交换律和乘法结合律的情境举例:利用植树活动情境“一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇水”。提出问题:“一共有多少名同学参加了这次植树活动”。让学生尝试通过不同的方法得出:
(4 + 2)×254×25 + 2×25
= 6×25 = 100 + 50
= 150(元)= 150(元)
此时,让学生观察通过计算方法得到了相同的结果,这两个算式可用“=”连接。使之让学生从中感受了乘法分配律的模型。从而引出乘法分配律的概念:“两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。”用字母形式表示:
(a + b)× c = a × c + b × c
三、在本节课的练习设计上,我力求有针对性、有坡度的知识延伸。
1、在完成课本36页做一做时,对应这3道判断题,
(1)、判断56×(19+28)=56×19+28,让学生感知到乘法分配律要分给括号里的每一个数,强调乘法分配律的“公平性”。
(2)、判断32×(7×3)=32×7+32×3,让学生注意到乘法结合律和乘法分配律的区别:通过对运算定律意义的描述,和算式的特点,提炼出最简洁的区分方法:乘法结合律是连乘情况下的,乘法分配律除了乘法还有加法(后继教学还会出现减法),容易使我们混淆的原因是,它们都是乘法的运算定律都有乘法出现,更关键是它们都出现了小括号。
(3)、判断64×64+36×64,借助64个64和36个64,一共是64+36=100个64,让学生理解乘法分配律逆向使用,在一些情况下,计算会变得十分简便。
2、在完成较简单的课本36页做一做后,进行一些扩展型的练习:
通过(250—25)×4,让学生感受到,乘法分配律除也可以两个数的差与一个数相乘。对于分配之后,再把两个积相减。同时复习强调我们熟悉的5道重要算式:5×2、25×4、125×8、125×4、25×8
由于本节课的知识运用的难度较大,学生对乘法分配律可以基本掌握,但是对于其万般变化,还是有点力不从心,而该运算定律对学生后继学习,尤其是小数和分数计算时有一定影响,所以还需要学生在本节课后进行深入的学习,教师也需要针对乘法分配律的每一种题型,结合学生的掌握情况进行更系统深入的讲解。
《乘法分配律》教学反思12
记得曾经在教孩子们乘法分配律的时候,总是遇到很多问题,对于乘法分配律的应用不是很好,吐槽了很久,现在在教二年级的'孩子的时候,我发现其实在二年级已经接触了这方面的知识,只是没有进行归纳而已。
二年级的课本上有这样一种题型,如:
(1)6x9=5x9+9=7x9—9=
(2)9x4=9x3+9=
9x5—9=
(3)8x9=7x9+9=9x9—9=
先计算,你发现了什么?
我一看到这题,我就想到乘法分配律,但是在二年级刚接触乘法,不可能就跟他们讲乘法分配律。我在上练习课的时候我特意把这题拿出来讲了,我想如果这里学生题解好了,对以后学习乘法分配律是有帮助的。在课堂上,我先让学生自己完成,第一题的第2,3个算式,他们是按照运算顺序来计算的,先算乘法,再算加法或减法,这个没有难度,而且他们根据第一题,后面的两题都不要做,直接写出了结果,每一题中的3个算式的结果是一样的。我就问他们,为什么会出现这样情况?学生就答不上来。我就举了个示范,6x9是6个9相加,5x9+9是5个9相加再加1个9,5个9加1个9是6个9,6个9相加就是6x9,所以5x9+9=6x9=54。学习了乘法的意义,对于这个他们能理解,只是想不到而已,那么7x9—9=,可以交给孩子们完成,第(2)(3)题我也是让学生来说一说。另外我还补充了一题,6x7—14,我发现竟然有孩子会想到14就是2个7,6个7减去2个7就是4个7,就是4x7=28。特别棒!
《乘法分配律》教学反思(汇总12篇)
下一篇:返回列表