高中数学说课稿
高中数学说课稿11篇 数学高中说课稿范文
下面是范文网小编分享的高中数学说课稿11篇 数学高中说课稿范文,供大家参考。
高中数学说课稿1
各位老师:
大家好!
我叫***,来自**。我说课的题目是《古典概型》,内容选自于高中教材新课程人教A版必修3第三章第二节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教法与学法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:
一、教材分析
1.教材所处的地位和作用
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。它承接着前面学过的随机事件的概率及其性质,又是以后学习条件概率的基础,起到承前启后的作用。
2.教学的重点和难点
重点:理解古典概型及其概率计算公式。
难点:古典概型的判断及把一些实际问题转化成古典概型。
二、教学目标分析
1.知识与技能目标
(1)通过试验理解基本事件的概念和特点
(2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。
2、过程与方法:
经历公式的推导过程,体验由特殊到一般的数学思想方法。
3、情感态度与价值观:
(1)用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。
(2)让学生掌握"理论来源于实践,并把理论应用于实践"的辨证思想。
三、教法与学法分析
1、教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。
2、学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度。
㈠创设情景、引入新课
在课前,教师布置任务,以小组为单位,完成下面两个模拟试验:
试验一:抛掷一枚质地均匀的硬币,分别记录"正面朝上"和"反面朝上"的次数,要求每个数学小组至少完成20次(最好是整十数),最后由代表汇总;
试验二:抛掷一枚质地均匀的骰子,分别记录"1点"、"2点"、"3点"、"4点"、"5点"和"6点"的次数,要求每个数学小组至少完成60次(最好是整十数),最后由代表汇总。
在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出两个问题。
1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?
不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。
2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?]
「设计意图」通过课前的模拟实验,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。
㈡思考交流、形成概念
学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深对新概念的理解。
[基本事件有如下的两个特点:
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和.]
「设计意图」让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。教师的注解可以使学生更好的把握问题的关键。
例1从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件?
先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点。
「设计意图」将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点
观察对比,发现两个模拟试验和例1的共同特点:
让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补充说明。
[经概括总结后得到:
(1)试验中所有可能出现的基本事件只有有限个;(有限性)
(2)每个基本事件出现的可能性相等。(等可能性)
我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。
「设计意图」培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过列出相同和不同点,能让学生很好的理解古典概型。
㈢观察分析、推导方程
问题思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?
教师提出问题,引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系,最后概括总结得出古典概型计算任何事件的概率计算公式:
「设计意图」鼓励学生运用观察类比和从具体到抽象、从特殊到一般的辩证唯物主义方法来分析问题,同时让学生感受数学化归思想的优越性和这一做法的合理性,突出了古典概型的概率计算公式这一重点。
提问:
(1)在例1的实验中,出现字母"d"的概率是多少?
(2)在使用古典概型的概率公式时,应该注意什么?
「设计意图」教师提问,学生回答,深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。
㈣例题分析、推广应用
例2单选题是标准化考试中常用的题型,一般是从A,B,c,D四个选项中选择一个正确答案。如果考生掌握了考差的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?
学生先思考再回答,教师对学生没有注意到的关键点加以说明。
「设计意图」让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。巩固学生对已学知识的掌握。
例3同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
先给出问题,再让学生完成,然后引导学生分析问题,发现解答中存在的问题。引导学生用列表来列举试验中的基本事件的总数。
「设计意图」利用列表数形结合和分类讨论,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。深化巩固对古典概型及其概率计算公式的理解。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。
㈤探究思想、巩固深化
问题思考:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?
要求学生观察对比两种结果,找出问题产生的原因。
「设计意图」通过观察对比,发现两种结果不同的根本原因是--研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。
㈥总结概括、加深理解
1.基本事件的特点
2.古典概型的特点
3.古典概型的概率计算公式
学生小结归纳,不足的地方老师补充说明。
「设计意图」使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。
㈦布置作业
课本练习1、2、3
「设计意图」进一步让学生掌握古典概型及其概率公式,并能够学以致用,加深对本节课的理解。
高中数学说课稿2
一、教材分析(说教材):
1. 教材所处的地位和作用:
本节内容在全书和章节中的作用是:《 》是 中数学教材第 册第 章第 节内容。在此之前学生已学习了 基础,这为过渡到本节的学习起着铺垫作用。本节内容是在 中,占据 的地位。以及为其他学科和今后的学习打下基础。
2. 教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标:
(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,(3)情感目标:通过 的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。
3. 重点,难点以及确定依据:
下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:
二、教学策略(说教法)
1. 教学手段:
如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点: 应着重采用 的教学方法。
2. 教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
3. 学情分析:(说学法)
(1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散
(2) 知识障碍上:知识掌握上,学生原有的知识 ,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍, 知识 学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。
(3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力
最后我来具体谈谈这一堂课的教学过程:
4. 教学程序及设想:
(1)由 引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。
(2)由实例得出本课新的知识点
(3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。
(4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。
(5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。
(6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。
(7)板书
(8)布置作业。
针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,
教学程序:
(一)课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分
高中数学集合教学反思
集合这章内容,教学参考书上安排的课时为五课时,我们的导学案也是安排五课时,实际教学时,由于对学生的实际情况估计不足,第一课时的导学案用了两课时才完成。集合这一章的特点是概念不多,但这章所涉及到的内容很广,学生学习本章内容时,不仅要理解本章的概念,还要理解与本章内容相关联的其他内容,这些内容有初中学习过的内容、有生活中的方方面面的相关知识,再加上高中学习方法与初中不同,逻辑思维能力要求较高,因此学生感觉学起来比较困难。针对这种情况,我在实际教学时,首先要求学生准确理解概念,如:集合的元素具有三个性质:确定性、互异性、无序性。集合的关系、运算等都是从元素的角度定义的,所以解集合问题时,教会学生对元素的性质进行分析,反复训练,让学生通过实例体会这三个性质。
第二,掌握相关的符号语言、venn图,正确使用列举法、描述法表示集合,特别要注意用描述法表示集合时,集合中的元素是什么,这是一个教学难点。第二个难点是集合的运算—交集和并集。突破难点充分运用数形结合思想,集合间的关系和运算,以数形结合思想为指导,借助图形思考,可以使各集合间的关系直观明了,使抽象的集合运算建立在直观的基础上,使解题思路清晰明朗,直观简捷,有利于问题的解决。
第三,指导学生理解并掌握自然语言、符号语言、图形语言这三种语言,灵活准确地进行语言转换,可以帮助学生提高分析问题,解决问题的能力。
第四,集合问题涉及到的其他内容,遇到了讲透,不拓展。
高中数学说课稿3
一、教材分析:
《向量的加法》是《必修》4第二章第二单元中"平面向量的线性运算"的第一节课。本节资料有向量加法的平行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。向量的加法是向量的线性运算中最基本的一种运算,向量的加法及其几何意义为后继学习向量的减法运算及其几何意义、向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。所以本课在"平面向量"及"空间向量"中有很重要的地位。
二、学情分析:
学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,明白向量能够自由移动,这是学习本节资料的基础。学生对数的运算了如指掌,并且在物理中学过力的合成、位移的合成等矢量的加法,所以向量的加法可经过类比数的加法、以所学的物理模型为背景引入,这样做有利于学生更好地理解向量加法的意义,准确把握两个加法法则的特点。
三、教学目的:
1、经过对向量加法的探究,使学生掌握向量加法的概念,结合物理学实际理解向量加法的意义。能正确领会向量加法的平行四边形法则和三角形法则的几何意义,并能运用法则作出两个已知向量的和向量。
2、在应用活动中,理解向量加法满足交换律和结合律以及表述两个运算律的几何意义。掌握有特殊位置关系的两个向量之和,比如共线向量,共起点向量、共终点向量等。
3、经过本节的学习,培养学生类比、迁移、分类、归纳等数学方面的本事。
四、教学重、难点
重点:向量的加法法则。探究向量的加法法则并正确应用是本课的重点。两个加法法则各有特点,联系紧密,你中有我,我中有你,实质相同,可是三角形法则适用范围更加广泛,且简便易行,所以是详讲资料,平行四边形法则在本课中所占份量略少于三角形法则。
难点:对三角形法则的理解;方向相反的两个向量的加法。主要是让学生认识到三角形法则的实质是:将已知向量首尾相接,而不是表示向量的有向线段之间必须构成三角形。
五、教学方法
本节采用以下教学方法:
1、类比:由数的加法运算类比向量的加法运算。
2、探究:由力的合成引入平行四边形法则,在法则的运用中观察图形得出三角形法则,探求共线向量的加法,发现三角形法则适用于任意向量相加;经过图形,观察得出向量加法满足交换律、结合律等,这些都体现探究式教学法的运用。
3、讲解与练习:对两个法则特点的分析,例题都采取了引导与讲解的方法,学生课堂完成教材中的练习。
4、多媒体技术的运用,能直观地表现向量的平移,相等向量的意义,更能说清两个法则的几何意义及运算律。
六、数学思想的体现:
1、分类的思想:总的来说本课中向量的加法分为不共线向量及共线向量两种形式,共线向量又分为方向相同与方向相反两种情形,然后专门对零向量与任意向量相加作了规定,这样对任意向量的加法都做了讨论,线索清楚。
2、类比思想:使之与数的加法进行类比,使学生对向量的加法不致于太陌生,既有似曾相识的感觉,又能从比较中看出两者的不一样,效果较好。
3、归纳思想:主要体此刻以下三个环节:
①学完平行四边形法则和三角形法则后,归纳总结,对不共线向量相加,两个法则都能够选用。
②由共线向量的加法总结出三角形法则适用于任意两个向量的相加,而三角形法则仅适用于不共线向量相加。
③对向量加法的结合律和探讨中,又使学生发现了三角形法则还适用于任意多个向量的加法。归纳思想在这三个环节中的运用,使得学生对两个加法法则,尤其是三角形法则的理解,步步深入。
七、教学过程:
1、回顾旧知:本节要进行向量的平移,且对向量加法分共线与不共线两种情景,所以要复习向量、相等向量、共线向量等概念,这些都是新课学习中必要的知识铺垫。
2、引入新课:
(1)平行四边形法则的引入。
学生在物理学中虽然接触过位移的合成,可是并没有构成三角形法则的概念;而对平行四边形法则学生已学过,很熟悉。所以我决定由力的合成引入向量加法的平行四边形法则。平行四边形法则的特点是起点相同,可是物理中力的合成是在有相同的作用点的条件下合成的,引入到数学中向量加法的平行四边形法则,所给出的图形也是现成的平行四边形,而学生刚学完相等向量,对相等向量的概念还没有深刻的认识,易产生误解:表示两个已知向量的有向线段的起点必须在一齐才能用平行四边形法则,不在一齐不能用。这时要经过讲解例1,使学生认识到能够经过平移向量,使表示两个向量的有向线段有共同的起点。这一点对理解及运用法则求两向量的和很重要。
设计意图:本着从学生最熟悉、离学生最近的知识经验为接入点,用学生熟知的方法来解决新的问题——向量的加法,这样新中有旧,学生容易理解,也使学科间的渗透发挥了作用,加深了学生对向量加法的平行四边形法则的"起点相同"这一特点的认识,例1的讲解使学生认识到当表示向量的有向线段的起点不在一齐时,须把起点移到一齐,至此才能使学生完成对平行四边形法则理解真正到位。
(2)三角形法则的引入。三角形法则没有按照教材中利用位移的合成引入,而是从前面所讲的平行四边形法则的图形中直接引入。
所以这种把两个向量相加的方法称为三角形法则。接下来用幻灯片完整展示三角形法则,同时法则的作法叙述、作图过程对学生也起到了示例的作用。于是前面的例1还能够利用三角形法则来做。
这时,总结出两个不共线向量求和时,平行四边形法则与三角形法则都能够用。
设计意图:由平行四边形法则的图形引入三角形法则,能够很清楚地使学生从向何意义上认识到两个法则之间的密切联系,理解它们的实质,并且衔接自然,能够使学生比较地得出两个法则的特点与实质,并对两个法则的特点有较深刻的印象。
(3)共线向量的加法
方向相同的两个向量相加,对学生来说较易完成,"将它们接在一齐,取它们的方向及长度之和,作为和向量的方向与长度。"引导学生分析作法,结果发现还是运用了三角形法则:首尾相接,方向由第一个向量的起点指向第二个向量的终点。
方向相反的两个向量相加,对学生来说是个难点,首先从作图上不明白怎样做。可是学生学过有理数加法中的异号两数相加:"异号两数相加,用较大的绝对值减去较小的绝对值,符号取绝对值较大的数的符号。"类比异号两数相加,他们会用较长的模减去较短的模,方向取模较长的向量的方向。具体做法由教师引导学生尝试运用三角形法则去做,发现结论正确。
反思过程,学生自然会想到方向相同的两个向量相加,类似于同号两数相加。这说明两个共线向量相加依然可用三角形法则经过以上几个环节的讨论,能够作个简单的小结:两个不共线向量相加,可采用平行四边形法则或三角形法则,而两个共线向量相加在本课所学方法中只能用三角形法则,说明三角形法则适用于任意两个向量相加。
设计意图:经过对共线向量加法的探讨,拓宽了学生对三角形法则的认识,使得不一样位置的向量相加都有了依据,并且采用类比的方法,使学生对共线向量的加法,尤其是方向相反的两个向量的加法更易于理解,能够化解难点。
(4)向量加法的运算律
①交换律:交换律是利用平行四边形法则的图形,又结合三角
形法则得出,理解起来没什么困难,再一次强化了学生对两个法则特点及实质的认识。
②结合律:结合律是经过三个向量首尾相接,先加前两个再与第三个向量相加,和先加后两个向量再与第一个向量相加所得结果相同。
接下来是对应的两个练习,运用交换律与结合律计算向量的和。
设计意图:运算律的引入给加法运算带来方便,从后面的练习中学生能够体会到这点。由结合律还使学生发现,多个向量相加,同样能够运用三角形法则:将所加向量首尾相接,和向量的方向是由第一个向量的起点指向最终一个向量的终点。这样使学生明白,三角形法则适用于任意多个向量相加。
3、小结
先由学生小结,检查学生对本课重要知识的认识,也给学生一个概括本节知识的机会,然后用课件展示小结资料,使学生印象更深。
(1)平行四边形法则:起点相同,适用于不共线向量的求和。
(2)三角形法则首尾相接,适用于任意多个向量的求和。
(3)运算律
高中数学说课稿4
一、教材地位与作用
本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理的知识非常重要。
二、学情分析
作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标
教学目标分析:
知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。
能力目标:探索正弦定理的证明过程,用归纳法得出结论。
情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。
三、教法学法分析
教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。
学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。
四、教学过程
(一)创设情境,布疑激趣
“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。
(二)探寻特例,提出猜想
1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。
2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。
3.让学生总结实验结果,得出猜想:
在三角形中,角与所对的边满足关系
这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。
(三)逻辑推理,证明猜想
1.强调将猜想转化为定理,需要严格的理论证明。
2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。
3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。
4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明。
(四)归纳总结,简单应用
1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。
2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。
3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。
(五)讲解例题,巩固定理
1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。
例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。
2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。
例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。
(六)课堂练习,提高巩固
1.在△ABC中,已知下列条件,解三角形。
(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列条件,解三角形。
(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°
学生板演,老师巡视,及时发现问题,并解答。
(七)小结反思,提高认识
通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?
1.用向量证明了正弦定
理,体现了数形结合的数学思想。
2.它表述了三角形的边与对角的正弦值的关系。
3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。
(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)
(八)任务后延,自主探究
如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。
高中数学说课稿5
各位老师,大家好!
我是08数学本科(2)班的xx,我今天说课的题目是集合的含义与表示.下面我先对教材进行分析.
一、教材分析
集合的含义与表示是选自高中新课标A版教材必修1第一章第一节内容。在此之前,学生已经接触过集合的一些相关概念,如自然数的集合、有理数的集合.集合是一个基础性概念,是数学以至所有科学的基础,应用广泛. 集合是高考的对象,在高考中以选择题或填空题的形式出现,在高考中具有不可忽视的地位.本节内容能够培养学生的探索精神和数学素养.
二、教学目标
根据上述对教材的分析,我确定本节课的教学目标为 1. 知识与技能目标 理解集合的含义,集合的元素的特征,元素与集合的关系. 掌握集合的表示方法. 了解常用的数集.培养学生的抽象思维能力、分析能力、判断能力.
2. 过程与方法目标
应用自然语言与集合语言描述不同的具体问题,与学生一道归纳出集合的含义. 掌握从具体到抽象,从特殊到一般的研究方法.
3. 情感态度价值观目标
使得学生感受数学的简洁美与和谐统一美. 培养学生正确的、高尚的、唯物的价值观.培养学生独立思考、敢于创新、勇于探索的科学精神,激发同学们学习数学的兴趣. 三、重点和难点
重点:根据上述对教材的分析,确定的教学目标,我确定本节课的教学重点为:集合的含义,集合的表示方法.
难点:考虑到学生已有的知识基础与认知能力,我认为教学难点是集合的表示方法. 关键:学好本节课的关键是理解集合的含义,掌握集合的表示方法. 四、教学方法 1.学情分析
(1)生理特点:高中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步走向理论型发展,观察能力、记忆能力和想象能力也随之迅速发展.
(2)心理特点:高中学生虽有好奇,好表现的因素,更有知道原理、明白方法的理性愿望,希望平等交流研讨,厌烦空洞的说教.
(3)认知障碍:有的学生遗忘了学过的知识,有的学生想象能力与归纳能力较差. 2.教法学法
根据上面的分析,从高中生的心理特点和认知水平出发,结合学生的实际情况与认知障碍,按照突出重点,突破难点,本节课采用学生广泛参与,师生共同探讨的启发式教学法. 五、教学过程(用描述性语言,不要具体化!)
根据以上分析,我对本节课的教学过程作如下安排:
1.引入课题
先引导学生回顾自然数的集合,有理数的集合,再提出问题:集合的含义是什么呢? 2.新课讲解
(1)分析自然数的集合,有理数的集合,不等式的解集,归纳出它们的共同特征:都是由一些确定的、互不相同的对象组成的整体.
(2)根据上面的分析与讨论,以及归纳出的共同特征,讲解集合的含义,元素与集合的关系,一些常见的数集.
(3)为了化解教学难点,我将结合具体的例子,讲解列举法与描述法.
(4)为了加强学生对集合的含义的理解,我将与学生一起归纳出集合的元素的特征. (5)为了提高学生解决实际问题的能力,我将讲解三个不同题型、不同难度的例题. 3.课堂练习
为了使得学生掌握等差数列的定义与通项公式,提高解题技能,我将在课堂上布置3道不同类型、不同难度的练习题.
4.归纳小结
完成以上的教学内容后,我将组织学生对本节课的内容做一个总结,强调重点. 5.布置作业
为了巩固所学知识,激发学生的求知欲,我将布置3道不同类型、不同难度的作业题. 六、板书设计
结合中学黑板的特点,我将如下板书本节教学内容: 集合的含义与表示 实例 1. 2. 3. 集合的含义 常见数集 元素与集合的关系 集合的表示方法 集合的元素的特征 例1 例2 例3 练习 作业 各位老师,以上只是我的一种预设方案,但课堂千变万化,我将根据实际情况灵活掌握,随机发挥.本说课一定存在诸多不足,恳请各位老师提出宝贵意见,谢谢! 1.1.2集合间的基本关系
数学必修1第一章第二节第1小节《集合间的基本关系》说课稿.
一 、教学内容分析
集合概念及其理论是近代数学的基石,集合语言是现代数学的基本语言,通过学习、使用集合语言,有利于学生简洁、准确地表达数学内容,高中课程只将集合作为一种语言来学
习,学生将学会使用最基本的集合语言表示有关的数学对象,发展运用数学语言进行交流的能力.
本章集合的初步知识是学生学习、掌握和使用数学语言的基础,是高中数学学习的出发点。本小节内容是在学习了集合的概念以及集合的表示方法、元素与集合的从属关系的基础上,进一步学习集合与集合之间的关系,同时也是下一节学习集合之间的运算的基础,因此本小节起着承上启下的重要作用.
本节课的教学重视过程的教学,因此我选择了启发式教学的教学方式。通过问题情境的设置,层层深入,由具体到抽象,由特殊到一般,帮助学生的逐步提升数学思维。
二、学情分析
本节课是学生进入高中学习的第3节数学课,也是学生正式学习集合语言的第3节课。由于一切对于学生来说都是新的,所以学生的学习兴趣相对来说比较浓厚,有利于学习活动的展开。而集合对于学生来说既熟悉又陌生,熟悉的是在初中就已经使用数轴求简单不等式(组)的解,用图示法表示四边形之间的关系,陌生的是使用集合的语言来描述集合之间的关系。而从具体的实例中抽象出集合之间的包含关系的本质,对于学生是一个挑战。
根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标和教学重、难点如下:
三、教学目标: 知识与技能目标:
(1)理解集合之间包含和相等的含义; (2)能识别给定集合的子集;
(3)能使用Venn图表达集合之间的包含关系 过程与方法目标:
(1)通过复习元素与集合之间的关系,对照实数的相等与不相等的关系联系元素与集合之间的从属关系,探究集合之间的包含和相等关系;
(2)初步经历使用最基本的集合语言表示有关的数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力;
情感、态度、价值观目标:
(1)了解集合的包含、相等关系的含义,感受集合语言在描述客观现实和数学问题中的意义;
(2)探索利用直观图示(Venn图)理解抽象概念,体会数形结合的思想。
四、本节课教学的重、难点:
重点:(1)帮助学生由具体到抽象地认识集合与集合之间的关系——子集; (2)如何确定集合之间的关系; 难点:集合关系与其特征性质之间的关系 五、教学过程设计
1.新课的引入——设置问题情境,激发学习兴趣
我们的教学方式,要服务于学生的学习方式。那我们来思考一下,在何种情况下,学生学得最好?我想,当学生感兴趣时;当学生智力遭遇到挑战时;当学生能自主地参与探索和创新时;当学生能够学以致用时;当学生得到鼓励与信任时,他们学得最好。数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,这样才能让学生体验到成就感,保持积极的兴奋状态。而集合的语言对于学生来说是陌生的,虽然比较容易理解,但是由于概念多,符号多,学生容易产生厌烦心理,如何让学生长时间兴趣盎然地投入到集合关系的学习中呢?我在整个教学过程中层层设问,不断地向学生提出挑战,以激发学生的学习兴趣。在引入的环节,我设计了下面的问题情境1:元素与集合有“属于”、“不属于”的关系;数与数之间有“相等”、“不相等”的关系;那么集合与集合之间有什么样的关系呢?问题的抛出犹如一石激起千层浪,在这儿,答案并不重要,重要的是学生迫切寻求答案的愿望,激发学生的求知欲。在学生讨论的基础上提出这一节课我们来共同探讨集合之间的基本关系。(板书课题)
2.概念的形成——从特殊到一般、从具体到抽象,从已知到未知 问题情境1的探究:
具体实例1: (1)A={1,2,3}; B={1,2,3,4,5}; (2)A={菱形}, B={平行四边形} (3)A={x| x>2}, B={x| x>1};
此环节设置了三个具体实例,包含了有限集、无限集、数集(包括不等式)、图形的集合。第一个例子为有限集数集,最为简单直观,对学生初步认识子集,理解子集的概念很有帮助;第二个例子是图形集合且是无限集,需要通过探究图形的性质之间的关系找出集合间的关系;第三个例子是无限数集,基于学生初中阶段已经学习了用数轴表示不等式的解集,启发学生可以通过数形结合的方式来研究集合之间的关系,从而引出Venn图。对第一个例子,借助多媒体演示动画,帮助学生体会“任意”性。使学生在经历直观感知、观察发现的基础上建构子集的概念,并且我在教学的过程中特别注重让学生说,借此来学习运用集合语言进行交流,对于学生的创新意识和创新结果我都给予积极的评价。
3、概念的剖析
(1)A中的元素x与集合B的关系决定了集合A与集合B之间的关系,
(2)符号的表示,Venn图的引入及其用Venn图表示集合的方法。
这里引入了许多新的符号,对初学者来说容易混淆,是一个易错点,因此我在这里设置了一个填空小练习:
0 {0}, {正方形} {矩形},三角形 {等边三角形} {梯形} {平行四边形},{x|-1
并引导学生类比数与数之间的“≤”“≥”符号来记忆“?”“?”符号。
4、概念的深化——集合的相等与真子集
问题情境2:如果集合A是集合B的子集,那么对于任意的x?A,有x?B;那么对于集合B中的任何一个元素,它与集合A之间又可能是什么关系呢?
高中数学说课稿6
一、教材分析
1、教材内容
本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》§2。1。3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题。
2、教材所处地位、作用
函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质。通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题。通过上述活动,加深对函数本质的认识。函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础。此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一。从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法。
3、教学目标
(1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性
的方法;
(2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。
(3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质。
4、重点与难点
教学重点(1)函数单调性的概念;
(2)运用函数单调性的定义判断一些函数的单调性。
教学难点(1)函数单调性的知识形成;
(2)利用函数图象、单调性的定义判断和证明函数的单调性。
二、教法分析与学法指导
本节课是一节较为抽象的数学概念课,因此,教法上要注意:
1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性。
2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决。
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用。具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达。
4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性。
在学法上:
1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。
2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃。
三、 教学过程
教学
环节
教 学 过 程
设 计 意 图
问题
情境
(播放中央电视台天气预报的音乐)
满足在定义域上的单调性的讨论。
2、重视学生发现的过程。如:充分暴露学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程;充分暴露在正、反两个方面探讨活动中,学生认知结构升华、发现的过程。
3、重视学生的动手实践过程。通过对定义的解读、巩固,让学生动手去实践运用定义。
4、重视课堂问题的设计。通过对问题的设计,引导学生解决问题。
高中数学说课稿7
一、教材分析
本节是人教A版高中数学必修三第二章《统计》中的第三节 “变量间的相关关系” 的第二课时。在上一课时,学生已经懂得根据两个相关变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。这节课是在上一节课的基础上介绍了用线性回归的方法研究两个变量的相关性和最小二乘法的思想。
从全章的内容上看,线性回归方程的建立不仅是本节的难点,也是本章内容的难点之一。线性回归是最简单的回归分析,学好回归分析是学好统计学的重要基础。
二、教学目标
根据课标的要求及前面的分析,结合高二学生的认知特点确定本节课的教学目标如下:
知识与技能:
1. 知道最小二乘法和回归分析的思想;
2. 能根据线性回归方程系数公式求出回归方程
过程与方法:
经历线性回归分析过程,借助图形计算器得出回归直线,增强数学应用和使用技术的意识。
情感态度与价值观
通过合作学习,养成倾听别人意见和建议的良好品质
三、重点难点分析:
根据目标分析,确定教学重点和难点如下:
教学重点:
1. 知道最小二乘法和回归分析的思想;
2.会求回归直线
教学难点:
建立回归思想,会求回归直线
四、教学设计
提出问题
理论探究
验证结论
小结提升
应用实践
作业设计
教学环节
内容及说明
创设情境
探究:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:
问题与引导设计
师生活动
设计意图
问题1. 利用图形计算器作出散点图,并指出上面的两个变量是正相关还是负相关?
教师提问,学生
通过动手操作得
出散点图并回答
以旧“探”新:对旧的知识进行简要的提问复习,为本节课学生能够更好的建构新的知识做好充分的准备;尤其为一些后进生能够顺利的完成本节课的内容提供必要的基础。
教师引导:通过上节课的学习,我们知道散点图是研究两个变量相关关系的一种重要手段。下面,请同学们根据得出的散点图,思考下面的问题2.
问题2. 甲同学判断某人年龄在65岁时体内脂肪含量百分比可能为34,乙同学判断可能为25,而丙同学则判断可能为37,你对甲,
乙,丙三个同学的判断有什么看法?
学生能够表达自己的看法。有的学生可能会认为乙同学的判断是错误的;有的学生可能认为甲乙丙三个同学的判断都是对的,答案不唯一
该问题具有探究性、启发性和开放性。鼓励学生大胆表达自己的看法。通过设计该问题,引导学生自己发现问题,注意到散点图中点的分布具有一定规律,体会观测点与回归直线的关系;进而引起学生的对本节课内容的兴趣。
问题3. 反思问题,你还可以提出哪些问题吗?小组讨论,看哪个小组提出的问题多
在小组讨论的形式下和比较哪个小组提出的问题多,学生之间会充分的进行交流,提出问题
通过小组讨论比较,调动学生的学习积极性和兴趣,活跃课堂气氛,达到学生自己提出问题的效果,培养学生的学生创新思维和问题意识。
学生可能提出的问题:
①为什么甲、丙同学的判断结果正确的可能性较大,而乙同学判断结果正确的可能性较小?
②某人年龄在65岁时体内脂肪含量百分比最可能是多少?在其它年龄时呢?
③这些样本数据揭示出两个相关变量之间怎样的关系呢?
④怎样用数学的方法研究变量之间的相关关系呢?每个问题都是学生“火热的思考”成果
高中数学说课稿8
一、教材分析:
1、教材的地位与作用:
线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用。本节内容是在学习了不等式、直线方程的基础上,利用不等式和直线方程的有关知识展开的,它是对二元一次不等式的深化和再认识、再理解。通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。
2、教学重点与难点:
重点:画可行域;在可行域内,用图解法准确求得线性规划问题的最优解。
难点:在可行域内,用图解法准确求得线性规划问题的最优解。
二、目标分析:
在新课标让学生经历“学数学、做数学、用数学”的理念指导下,本节课的教学目标分设为知识目标、能力目标和情感目标。
知识目标:
1、了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行
域和最优解等概念;
2、理解线性规划问题的图解法;
3、会利用图解法求线性目标函数的最优解.
能力目标:
1、在应用图解法解题的过程中培养学生的观察能力、理解能力。
2、在变式训练的过程中,培养学生的分析能力、探索能力。
3、在对具体事例的感性认识上升到对线性规划的理性认识过程中,培养学生运用数形结合思想解题的能力和化归能力。
情感目标:
1、让学生体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用,品尝学习数学的乐趣。
2、让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神;
3、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想。
三、过程分析:
数学教学是数学活动的教学。因此,我将整个教学过程分为以下六个教学环节:1、创设情境,提出问题;2、分析问题,形成概念;3、反思过程,提炼方法;4、变式演练,深入探究;5、运用新知,解决问题;6、归纳总结,巩固提高。
1、创设情境,提出问题:
在课堂教学的开始,我以一组生动的动画(配图片)描述出在神奇的数学王国里,有一种算法广泛应用于工农业、军事、交通运输、决策管理与规划等领域,应用它已节约了亿万财富,还被列为20世纪对科学发展和工程实践影响最大的十大算法之一。它为何有如此大的魅力?它又是怎样的一种神奇算法呢?我以景激情,以情激思,点燃学生的求知欲,引领学生进入学习情境。
高中数学说课稿9
高中数学第三册(选修)Ⅱ第一章第2节第一课时
一、教材分析
教材的地位和作用
期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。
教学重点与难点
重点:离散型随机变量期望的概念及其实际含义。
难点:离散型随机变量期望的实际应用。
[理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。
二、教学目标
[知识与技能目标]
通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。
会计算简单的离散型随机变量的期望,并解决一些实际问题。
[过程与方法目标]
经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。
通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。
[情感与态度目标]
通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。
三、教法选择
引导发现法
四、学法指导
“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。
五、教学的基本流程设计
高中数学第三册《离散型随机变量的期望》说课教案.rar
高中数学说课稿10
1.教材分析
1-1教学内容及包含的知识点
(1)本课内容是高中数学第二册第七章第三节《两条直线的位置关系》的最后一个内容
(2)包含知识点:点到直线的距离公式和两平行线的距离公式
1-2教材所处地位、作用和前后联系
本节课是两条直线位置关系的最后一个内容,在此之前,有对两线位置关系的定性刻画:平行、垂直,以及对相交两线的定量刻画:夹角、交点。在此之后,有圆锥曲线方程,因而本节既是对前面两线垂直、两线交点的复习,又是为后面计算点线距离(在直线和圆锥曲线构成的组合图形中)提供一套工具。
可见,本课有承前启后的作用。
1-3教学大纲要求
掌握点到直线的距离公式
1-4高考大纲要求及在高考中的显示形式
掌握点到直线的距离公式。在近年的高考中,通常以直线和圆锥曲线构成的组合图形为背景,判断直线和圆锥曲线的位置或构成三角形求高,涉及绝对值,直线垂直,最小值等。
1-5教学目标及确定依据
教学目标
(1)掌握点到直线的距离的概念、公式及公式的推导过程,能用公式来求点线距离和线线距离。
(2)培养学生探究性思维方法和由特殊到一般的研究能力。
(3)认识事物之间相互联系、互相转化的辩证法思想,培养学生转化知识的能力。
(4)渗透人文精神,既注重学生的智慧获得,又注重学生的情感发展。
确定依据:
中华人民共和国教育部制定的《全日制普通高级中学数学教学大纲》(20xx年4月第一版),《基础教育课程改革纲要(试行)》,《高考考试说明》(20xx年)
1-6教学重点、难点、关键
(1)重点:点到直线的距离公式
确定依据:由本节在教材中的地位确定
(2)难点:点到直线的距离公式的推导
确定依据:根据定义进行推导,思路自然,但运算繁琐;用等积法推导,运算较简单,但思路不自然,学生易被动,主体性得不到体现。
分析“尝试性题组”解题思路可突破难点
(3)关键:实现两个转化。一是将点线距离转化为定点到垂足的距离;二是利用等积法将其转化为直角三角形中三顶点的距离。
2.教法
2-1发现法:本节课为了培养学生探究性思维目标,在教学过程中,使老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己练习“尝试性题组”,引导、启发学生分析、发现、比较、论证等,从而形成完整的数学模型。
确定依据:
(1)美国教育学家波利亚的教与学三原则:主动学习原则,最佳动机原则,阶段渐进性原则。
(2)事物之间相互联系,相互转化的辩证法思想。
2-2教具:多媒体和黑板等传统教具
3.学法
3-1发现法:丰富学生的数学活动,学生经过练习、观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。
一句话:还课堂以生命力,还学生以活力。
3-2学情:
(1)知识能力状况,本节为两线位置关系的最后一个内容,在这之前学生已经系统的学习了直线方程的各种形式,有对两线位置关系的定性认识和对两线相交的定量认识,为本节推证公式涉及到直线方程、两线垂直、两线交点作好了知识储备。同时学生对解析几何的实质中,用坐标系沟通直线与方程的研究办法,有了初步认识,数形结合的思想正逐渐趋于成熟。
(2)心理特点:又见“点到直线的距离”(初中已学习定义),学生既熟悉又陌生,既困惑又好奇,探询动机由此而生。
(3)生活经验:数学源于生活,生活中的点线距随处可见,怎样将实际问题数学化,是每个追求成长、追求发展的学生所渴求的一种研究能力。丰富的课堂数学活动能够让他们真正参与,体验过程,锤炼意志,培养能力。
3-3学具:直尺、三角板
3. 教学程序
时,此时又怎样求点A到直线
的距离呢?
生: 定性回答
点明课题,使学生明确学习目标。
创设“不愤不启,不悱不发”的学习情景。
练习
比较
发现
归纳
讨论
的距离为d
(1) A(2,4),
:x = 3, d=_____
(2) A(2,4),
:y = 3,d=_____
(3) A(2,4),
:x – y = 0,d=_____
尝试性题组告诉学生下手不难,还负责特例检验,从而增强学生参与的信心。
请三个同学上黑板板演
师: 请这三位同学分别说说自己的解题思路。
生: 回答
教学机智:应沉淀为三种思路:一,根据定义转化为定点到垂足的距离;二,利用等积法转化为直角三角形中三个顶点之间的距离;三,利用直角三角形中的边角关系。
视回答的情况,老师进行肯定、修正或补充提问:“还有其他不同的思路吗”。
说解题思路,一是让学生清晰有条理的表达自己的思考过程,二是其求解过程提示了证明的途径(根据定义或画坐标线时正好交出一个直角三角形)
师:很好,刚才我们解决了定点到特殊直线的距离问题,那么,点P(x0,y0)到一般直线
:Ax+By+C=0(A,B≠0)的距离又怎样求?
教学机智:如学生反应不大,则补充提问:上面三个题的解题思路对这个问题有启示吗?
生:方案一:根据定义
方案二:根据等积法
方案三: ......
设置此问,一是使学生的认知由特殊向一般转化,发现可能的方法,二是让学生体验数学活动充满着探索和创造,感受数学的生机和乐趣。
师生一起进行比较,锁定方案二进行推证。
“师生共作”体现新型师生观,且//时,又怎样求这两线的距离?
生:计算得线线距离公式
师:板书点到直线的距离公式,两平行线间距离公式
“没有新知识,新知识均是旧知识的组合”,创设此问可发挥学生的创造性,增加学生的成就感。
反思小结
经验共享
(六 分 钟)
师: 通过以上的学习,你有哪些收获?(知识,能力,情感)。有哪些疑问?谁能答这些疑问?
生: 讨论,回答。
对本节课用到的技能,数学思维方法等进行小结,使学生对本节知识有一个整体的认识。
共同进步,各取所长。
练习
(五 分 钟)
P53 练习 1, 2,3
熟练的用公式来求点线距离和线线距离。
再度延伸
(一 分 钟)
探索其他推导方法
“带着问题进课堂,带着更多的问题出课堂”,让学生真正学会学习。
4. 教学评价
学生完成反思性学习报告,书写要求:
(1) 整理知识结构
(2) 总结所学到的基本知识,技能和数学思想方法
(3) 总结在学习过程中的经验,发明发现,学习障碍等,说明产生障碍的原因
(4) 谈谈你对老师教法的建议和要求。
作用:
(1) 通过反思使学生对所学知识系统化。反思的过程实际上是学生思维内化,知识深化和认知牢固化的一个心理活动过程。
(2) 报告的写作本身就是一种创造性活动。
(3) 及时了解学生学习过程中的知识缺陷,思维障碍,有利于教师了解学生对自己的教法的满意度和效果,以便作出及时调整,及时进行补偿性教学。
5. 板书设计
(略)
6. 教学的反思总结
心理历练,得意之处,困惑之处,知识的传承发展,如何修正完善等。
高中数学说课稿11
一、教学目标:
知识与技能目标:准确理解椭圆的定义,掌握椭圆的标准方程及其推导。
过程与方法目标:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力。
情感、态度与价值观目标:通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美,通过讨论椭圆方程推导的等价性养成学生扎实严谨的科学态度。
二、教学重点、难点:
重点是椭圆的定义及标准方程,难点是推导椭圆的标准方程。
三、教学过程:
教学环节
教学内容和形式
设计意图
复习
提问:
(1)圆的定义是什么?圆的标准方程的形式怎样?
(2)如何推导圆的标准方程呢?
激活学生已有的认知结构,为本课推导椭圆标准方程提供了方法与策略。
讲授新课
一、授新
1.椭圆的定义:(略)
活动过程:
操作-----交流-----归纳-----多媒体演示-----联系生活
形成概念:
操作:
<1>固定一条细绳的两端,用笔尖将细绳拉紧并运动,在纸上你得到了怎样的图形?
<2>如果调整、的相对位置,细绳的长度不变,猜想你的椭圆会发生怎样的变化?
在动手过程中,培养学生观察、辨析、归纳问题的能力。
在变化的过程中发现圆与椭圆的联系;建立起用联系与发展的观点看问题;为下一节深入研究方程系数的几何意义埋下伏笔。
教学环节
深化概念:
注:1、平面内。
2、若,则点P的轨迹为椭圆。
若,则点P的轨迹为线段。
若,则点P的轨迹不存在。
联系生活:
情境1.生活中,你见过哪些类似椭圆的图形或物体?
情境2.让学生观察倾斜的圆柱形水杯的水面边界线,并从中抽象出数学模型.(教师用多媒体演示)
情境3.观看天体运行的轨道图片。
教学内容和形式:
准确理解椭圆的定义。
渗透数学源于生活,圆锥曲线在生产和技术中有着广泛的应用。
设计意图:
2.椭圆的标准方程:
例:已知点、为椭圆的两个焦点,P为椭圆上的任意一点,且,其中,求椭圆的方程
活动过程:点拨-----板演-----点评
一般步骤:
(1)建系设点
(2)写出点的集合
(3)写出代数方程
(4)化简方程:
<1>请一位基础较好,书写规范的同学板演。
<2>教师在巡视过程中及时发现问题给予点拨。
(5)证明:讨论推导的等价性
掌握椭圆标准方程及推导方法。
培养学生战胜困难的意志品质并感受数学的简洁美、对称美。
养成学生扎实严谨的科学态度。
应用
举例
教学环节
二、应用
例1.(1)椭圆的焦点坐标为:
(2)椭圆的焦距为4,则m的值为:
活动过程:思考-----解答-----点评
例2.已知椭圆焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P到两焦点的距离的和等于10,求椭圆的标准方程
活动过程:思考-----解答-----点评
变式<1>已知椭圆焦点的坐标分别是(-4,0)(4,0),且经过点,求椭圆的标准方程。
活动过程:思考-----板演(对比)-----点评
教学内容和形式:
明确椭圆两种形式的标准方程。
运用椭圆的定义,掌握椭圆的标准方程。
运用椭圆的定义或待定系数法求椭圆的标准方程。
设计意图:
变式<2>已知椭圆经过点、,
求椭圆的标准方程
活动过程:思考-----解答-----点评
认清椭圆两种标准方程形式上的特征。
课堂小结:
提问:本节课学习的主要知识是什么?你学会了哪些数学思想与方法?
活动过程:教师提问-----学生小结-----师生补充完善。
让学生回顾本节所学知识与方法,以逐步提高学生自我获取知识的能力。
作业布置:
作业:教材第95页,练习2、4,第96页习题8-1,1、2、3、
探索:平面内到两个定点的距离差、积、商为定值的点的轨迹是否存在?若存在轨迹是什么?
分层次布置作业,帮助学生巩固所学知识;为学有余力的学生留有进一步探索、发展的空间。
四、板书设计
8.1椭圆及其标准方程
一、复习引入二、新课讲解三、习题研讨
1.椭圆的定义
2.椭圆的标准方程
总体说明:本节课的设计力图贯彻"以人的发展为本"的教育理念,体现"教师为主导,学生为主体"的现代教学思想。在对椭圆定义的讲授中,遵循从生动直观到抽象概括的教学原则和教学途径,通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力;让椭圆生动灵活地呈现在学生面前,更有助于学生理解椭圆的内涵和外延。对本课另一难点标准方程推导的讲授中,在关键处设疑,以疑导思,让学生先从目的、再从方法上考虑,引导学生对比、分析,师生共同完成。通过经历椭圆方程的化简,增强了学生战胜困难的意志品质并体会数学的简洁美、对称美.通过讨论椭圆方程推导的等价性养成学生扎实严谨的科学态度。设计的例题及变式练习,充分利用新知识解决问题,使所学内容得以巩固。变式(2)的设计让学生站在方程的角度认清椭圆两种标准方程形式上的特征,将学生的思维提升到了一个新的高度。课后分层次布置作业,帮助学生巩固所学知识;课后探索更为学有余力的学生留有进一步探索、发展的空间。在教学中借助多媒体生动、直观、形象的特点来突出教学重点。自始至终很好地调动学生的积极性,挖掘他们的内在潜能,提高学生的综合素质。