欢迎访问吾小秘【www.wxiaomi.cn】,您身边的文字小秘书!

高中数学说课稿范文

时间:

高中数学说课稿范文12篇(中学数学说课稿范文)

本文由吾小秘【www.wxiaomi.cn】会员分享,供您参阅。文内整理了12篇相关范文,平均每篇2473个字,阅读大概需要6分钟。

  下面是范文网小编分享的高中数学说课稿范文12篇(中学数学说课稿范文),供大家参考。

高中数学说课稿范文12篇(中学数学说课稿范文)

高中数学说课稿范文1

  一、教材结构与内容简析

  1本节内容在全书及章节的地位:

  《向量》出现在高中数学第一册(下)第五章第1节。本节内容是传统意义上《平面解析几何》的基础部分,因此,在《数学》这门学科中,占据极其重要的地位。

  2数学思想方法分析:

  (1)从“向量可以用有向线段来表示”所反映出的“数”与“形”之间的转化,就可以看到《数学》本身的“量化”与“物化”。

  (2)从建构手段角度分析,在教材所提供的材料中,可以看到“数形结合”思想。

  二、教学目标

  根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

  1基础知识目标:掌握“向量”的概念及其表示方法,能利用它们解决相关的问题。

  2能力训练目标:逐步培养学生观察、分析、综合和类比能力,会准确地阐述自己的思路和观点,着重培养学生的认知和元认知能力。

  3创新素质目标:引导学生从日常生活中挖掘数学内容,培养学生的发现意识和整合能力;《向量》的教学旨在培养学生的“知识重组”意识和“数形结合”能力。

  4个性品质目标:培养学生勇于探索,善于发现,独立意识以及不断超越自我的创新品质。

  三、教学重点、难点、关键

  重点:向量概念的引入。

  难点:“数”与“形”完美结合。

  关键:本节课通过“数形结合”,着重培养和发展学生的认知和变通能力。

  四、教材处理

  建构主义学习理论认为,建构就是认知结构的组建,其过程一般是先把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线形成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知识体。本课时为何提出“数形结合”呢,应该说,这一处理方法正是基于此理论的体现。其次,本节课处理过程力求达到解决如下问题:知识是如何产生的?如何发展?又如何从实际问题抽象成为数学问题,并赋予抽象的数学符号和表达式,如何反映生活中客观事物之间简单的和谐关系。

  五、教学模式

  教学过程是教师活动和学生活动的十分复杂的动态性总体,是教师和全体学生积极参与下,进行集体认识的过程。教为主导,学为主体,又互为客体。启动学生自主性学习,启发引导学生实践数学思维的过程,自得知识,自觅规律,自悟原理,主动发展思维和能力。

  六、学习方法

  1、让学生在认知过程中,着重掌握元认知过程。

  2、使学生把独立思考与多向交流相结合。

  七、教学程序及设想

  (一)设置问题,创设情景。

  1、提出问题:在日常生活中,我们不仅会遇到大小不等的量,还经常会接触到一些带有方向的量,这些量应该如何表示呢?

  2、(在学生讨论基础上,教师引导)通过“力的图示”的回忆,分析大小、方向、作用点三者之间的关系,着重考虑力的作用点对运动的相对性与绝对性的影响。

  设计意图:

  1、把教材内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”、惊讶、困惑、感到棘手,紧张地沉思,期待寻找理由和论证的过程。

  2、我们知道,学习总是与一定知识背景即情境相联系的。在实际情境下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识。这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情境中。

  (二)提供实际背景材料,形成假说。

  1、小船以0。5m/s的速度航行,已知一条河长xxxxm,宽150m,问小船需经过多长时间,到达对岸?

  2、到达对岸?这句话的实质意义是什么?(学生讨论,期望回答:指代不明。)

  3、由此实际问题如何抽象为数学问题呢?(学生交流讨论,期望回答:要确定某些量,有时除了知道其大小外,还需要了解其方向。)

  设计意图:

  1、教师范文吧在稍稍超前于学生智力发展的边界上(即思维的最邻近发展)通过问题引领,来促成学生“数形结合”思想的形成。

  2。通过学生交流讨论,把实际问题抽象成为数学问题,并赋予抽象的数学符号和表达方式。

  (三)引导探索,寻找解决方案。

  1、如何补充上面的题目呢?从已学过知识可知,必须增加“方位”要求。

  2。方位的实质是什么呢?即位移的本质是什么?期望回答:大小与方向的统一。

  3、零向量、单位向量、平行向量、相等向量、共线向量等系列化概念之间的关系是什么?(明确要领。)

  设计意图:

  学生在教师引导下,在积累了已有探索经验的基础上,进行讨论交流,相互评价,共同完成了“数形结合”思想上的建构。

  2、这一问题设计,试图让学生不“唯书”,敢于和善于质疑批判和超越书本和教师,这是创新素质的突出表现,让学生不满足于现状,执着地追求。

  3、尽可能地揭示出认知思想方法的全貌,使学生从整体上把握解决问题的方法。

  (四)总结结论,强化认识。

  经过引导,学生归纳出“数形结合”的思想——“数”与“形”是一个问题的两个方面,“形”的外表里,蕴含着“数”的本质。

  设计意图:促进学生数学思想方法的形成,引导学生确实掌握“数形结合”的思想方法。

  (五)变式延伸,进行重构。

  教师引导:在此我们已经知道,欲解决一些抽象的数学问题,可以借助于图形来解决,这就是向量的理论基础。

  下面继续研究,与向量有关的一些概念,引导学生利用模型演示进行观察。

  概念1:长度为0的向量叫做零向量。

  概念2:长度等于一个单位长度的向量,叫做单位向量。

  概念3:方向相同或相反的非零向量叫做平行(或共线)向量。(规定:零向量与任一向量平行。)

  概念4:长度相等且方向相同的向量叫做相等向量。

  设计意图:

  1。学生在教师引导下,在积累了已有探索经验的基础上进行讨论交流,相互评价,共同完成了有向线段与向量两者关系的建构。

  2。这些概念的比较可以让学生加强对“向量”概念的理解,以便更好地“数形结合”。

  3。让学生对教学思想方法,及其应情境达到较为纯熟的认识,并将这种认识思维地贮存在大脑中,随时提取和应用。

  (六)总结回授调整。

  1。知识性内容:

  例设O是正六边形ABCDEF的中心,分别写出图中与向量OA、OB、OC相等的向量。

  2。对运用数学思想方法创新素质培养的小结:

  a。要善于在实际生活中,发现问题,从而提炼出相应的数学问题。发现作为一种意识,可以解释为“探察问题的意识”;发现作为一种能力,可以解释为“找到新东西”的能力,这是培养创造力的基本途径。

  b。问题的解决,采用了“数形结合”的数学思想,体现了数学思想方法是解决问题的根本途径。

  c。问题的变式探究的过程,是一个创新思维活动过程中一种多维整合过程。重组知识的过程,是一种多维整合的过程,是一个高层次的知识综合过程,是对教材知识在更高水平上的概括和总结,有利于形成一个自我再生力强的开放的动态的知识系统,从而使得思维具有整体功能和创新能力。

  2。设计意图:

  1、知识性内容的总结,可以把课堂教学传授的知识,尽快转化为学生的素质。

  2、运用数学方法创新素质的小结,能让学生更系统,更深刻地理解数学思想方法在解题中的地位和作用,并且逐渐培养学生的良好个性品质。这是每堂课必不可少的一个重要环节。

  (七)布置作业。

  反馈“数形结合”的探究过程,整理知识体系,并完成习题5。1的内容。

高中数学说课稿范文2

  各位评委老师好:今天我说课的题目是

  是必修章第节的内容,我将以新课程标准的理念指导本节课的教学,从教材分析,教法学法,教学过程,教学评价四个方面加以说明。

  一、 教材分析

  是在学习了基础上进一步研究 并为后面学习 做准备,在整个

  高中数学中起着承上启下的作用,因此本节内容十分重要。

  根据新课标要求和学生实际水平我制定以下教学目标

  1、 知识能力目标:使学生理解掌握

  2、 过程方法目标:通过观察归纳抽象概括使学生构建领悟 数学思想,培养 能力

  3、 情感态度价值观目标:通过学习体验数学的科学价值和应用价值,培养善于

  观察勇于思考的学习习惯和严谨 的科学态度

  根据教学目标、本节特点和学生实际情况本节重点是 ,由于学生对 缺少感性认识,所以本节课的重点是

  二、教法学法

  根据教师主导地位和学生主体地位相统一的规律,我采用引导发现法为本节课的主要教学方法并借助多媒体为辅助手段。在教师点拨下,学生自主探索、合作交流来寻求解决问题的方法。

  三、 教学过程

  四、 教学程序及设想

  1、由……引入:

  把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。 在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。

  对于本题:……

  2、由实例得出本课新的知识点是:……

  3、讲解例题。

  我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:

  4、能力训练。

  课后练习……

  使学生能巩固羡慕自觉运用所学知识与解题思想方法。

  5、总结结论,强化认识。

  知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

  6、变式延伸,进行重构。

  重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。

  五、教学评价

  学生学习的学习结果评价当然重要,但是更重要的是学生学习的过程评价,教师应

  当高度重视学生学习过程中的参与度、自信心、团队精神合作意识数学能力的发现,以及学习的兴趣和成就感。

高中数学说课稿范文3

各位老师:

  大家好!我叫张西元。我说课的题目是《系统抽样》,内容选自于苏教版必修3第二章第一节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等五大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1.教材所处的地位和作用

  学生已初步了解掌握了简单随机抽样的两种方法,即抽签法与随机数表法,在此基础上进一步学习系统抽样,它也是“统计学”的重要组成部分,通过对系统抽样的学习,更加突出统计在日常生活中的应用,体现它在中学数学中的地位。

  2 教学的重点和难点

  重点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。难点:当 不是整数时的处理办法,个体编号具有某种周期性时,“坏样本”的理解。

  二、教学目标分析

  1.知识与技能目标:

  (1)正确理解系统抽样的概念;

  (2)掌握系统抽样的一般步骤;

  (3)正确理解系统抽样与简单随机抽样的关系;

  2、过程与方法目标:

  通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法高考资源

  3、情感态度与价值观目标:

  通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系

  三、教学方法与手段分析

  1.教学方法:为了充分让学生自己分析、判断、自主学习、合作交流。因此,我采用讨论发现法教学。

  2.教学手段:通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性。

  四、教学过程分析

  (一)新课引入

  1、复习提问:

  (1)什么是简单随机抽样?有哪两种方法?

  (2)抽签法与随机数表法的一般步骤是什么?

  (3)简单随机抽样应注意哪两个原则?

  (4)什么样的总体适合简单随机抽样?为什么?

  [设计意图]通过复习提问进一步理解掌握简单随机抽样的概念方法和步骤?为新课学习打基础

  2、实例探究

  实例:某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?

  当总体数量较多时,应当如何抽取?结合具体事例探究问题,设计你的抽取样本的方法。抽取的样本公平性与代表性如何?学生自主探究后小组讨论回答。

  [设计意图]通过设置问题情境,让学生参与问题解决的全过程,引导学生探究发现新知识新方法,完成从总体中抽取样本,并发现“等距抽样”的特性,从而形成感性的系统抽样的概念与方法。这样做既充分体现学生的主体地位和教师的主导作用,同时也较好地贯彻新课程所倡导“自主探究、合作交流”的学习方式。

  (二)新课讲授

  1、系统抽样的概念方法步骤

  (学生阅读课本上的内容,教师引导学生总结归纳得出“系统抽样”的概念,并点明课题)

  [设计意图]经历实例探究过程,学生对系统抽样的概念方法步骤应有大致了解,辅以教师引导,从具体到一般,本节新课题的学习便水到渠成。

  2、典型例题精析

  例1、某校高中三年级的300名学生已经编号为1,2,……,300,为了了解学生的学习情况,要按10%的比例抽取一个样本,请用系统抽样的方法进行抽取,并写出过程。

  (教师题意分析,引导学生应用新知识新方法,学生分析思考,探究解题,小组讨论后口述解题过程)

  [设计意图]实例巩固,在得出新课的有关知识之后,再次让学生在解决实际问题的过程中,进一步理解掌握系统抽样的方法步骤,达到学以致用的技能,培养“学数学,用数学”的意识。

  例2、某单位在职职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查,试采用系统抽样方法抽取所需的样本。

  [设计意图]当 不是整数时,设置本题让学生尝试回答,并形成一般思路与方法。

  (三) 练习巩固

  1、将全班学生按男女生交替排成一路纵队,用掷骰的方法在前6名学生中任选一名,用 表示该名学生在队列中的序号,将队列中序号为 ,(k=1,2,3,…)的学生抽出作为样本,这种抽样方法叫做系统抽样吗?为什么?其样本的代表性与公平性如何?

  2、若按体重大小次序排成一路纵队呢?

  [设计意图]配合课本第60页“边空”问题:“请将这种抽样方法与简单随机抽样做一个比较,你认为系统抽样能提高样本的代表性吗?为什么?”,帮助理解个体编号具有某种周期性时,样本代表性较差的特点。同时分析系统抽样的优点与缺点。

  (四)回顾小结

  1、师生共同回顾系统抽样的概念方法与步骤

  2、与简单随机抽样比较,系统抽样适合怎样的总体情况?

  3、当 不是整数时,一般步骤是什么?此时样本的公平性与代表性如何?

  (五)布置作业

  课本第61页的练习第1,2,3题

  设计意图:课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。

高中数学说课稿范文4

  【教材分析】

  1、本节教材的地位与作用

  本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题。这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义。

  2、教学重点

  会求闭区间上连续开区间上可导的函数的最值。

  3、教学难点

  高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法。

  4、教学关键

  本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点。

  【教学目标】

  根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标:

  1、知识和技能目标

  (1)理解函数的最值与极值的区别和联系。

  (2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值。

  (3)掌握用导数法求上述函数的最大值与最小值的方法和步骤。

  2、过程和方法目标

  (1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值。

  (2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处。

  (3)会求闭区间上连续,开区间内可导的函数的最大、最小值。

  3、情感和价值目标

  (1)认识事物之间的的区别和联系。

  (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题。

  (3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神。

  【教法选择】

  根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用。

  本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输。为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学。

  【学法指导】

  对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用。

  【教学过程】

  本节课的教学,大致按照“创设情境,铺垫导入——合作学习,探索新知——指导应用,鼓励创新——归纳小结,反馈回授”四个环节进行组织。

高中数学说课稿范文5

  一、本节内容的地位与重要性

  "分类计数原理与分步计数原理"是《高中数学》一节独特内容。这一节课与排列、组合的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解分类计数原理与分步计数原理,还为日后排列、组合和二项式定理的教学做好准备,起到奠基的重要作用。

  二、关于教学目标的确定

  根据两个基本原理的地位和作用,我认为本节课的教学目标是:

  (1)使学生正确理解两个基本原理的概念;

  (2)使学生能够正确运用两个基本原理分析、解决一些简单问题;

  (3)提高分析、解决问题的能力

  (4)使学生树立"由个别到一般,由一般到个别"的认识事物的辩证唯物主义哲学思想观点。

  三、关于教学重点、难点的选择和处理

  中学数学课程中引进的关于排列、组合的计算公式都是以两个计数原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以正确理解两个基本原理并能解决实际问题是学习本章的重点内容。

  正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件。而原理中提到的分步和分类,学生不是一下子就能理解深刻的,面对复杂的事物和现象学生对分类和分步的选择容易产生错误的认识,所以分类计数原理和分步计数原理的准确应用是本节课的教学难点。必需使学生认清两个基本原理的实质就是完成一件事需要分类还是分步,才能使学生接受概念并对如何运用这两个基本原理有正确清楚的认识。教学中两个基本问题的引用及引伸,就是为突破难点做准备。

  四、关于教学方法和教学手段的选用

  根据本节课的内容及学生的实际水平,我采取启发引导式教学方法并充分发挥电脑多媒体的辅助教学作用。

  启发引导式作为一种启发式教学方法,体现了认知心理学的基本理论。符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则,教学过程中,教师采用点拨的方法,启发学生通过主动思考、动手操作来达到对知识的"发现"和接受,进而完成知识的内化,使书本的知识成为自己的知识。

  电脑多媒体以声音、动画、影像等多种形式强化对学生感观的刺激,这一点是粉笔和黑板所不能比拟的,采取这种形式,可以极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标更完美地体现。另外,电脑软件具有良好的交互性,可以将教师的思路和策略以软件的形式来体现,更好地为教学服务。

  五、关于学法的指导

  "授人以鱼,不如授人以渔",在教学过程中,不但要传授学生课本知识,还要培养学生主动观察、主动思考、自我发现的学习能力,增强学生的综合素质,从而达到教学的目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发点拨,类比推理,在积极的双边活动中,学生找到了解决疑难的方法。整个过程贯穿"设疑"——"思索"——"发现"——"解惑"四个环节,学生随时对所学知识产生有意注意,思想上经历了从肯定到否定、又从否定到肯定的辨证思维过程,符合学生认知水平,培养了学习能力。

  六、关于教学程序的设计

  (一)课题导入

  这是本章的第一节课,是起始课,讲起始课时,把这一学科的内容作一个大概的介绍,能使学生从一开始就对将要学习的知识有一个初步的了解,并为下面的学习打下思想基础。所以,首先阅读引言,明确任务,激发兴趣。由学生感兴趣的乒乓球比赛提出问题,引出学习本节的必要性,明确研究计数方法是本章内容的独特性,从应用的广泛看学习本章内容的重要性。同时板书课题(分类计数原理与分步计数原理)

  这样做,能使学生明白本节内容的地位和作用,激发其学习新知识的欲望,为顺利完成教学任务做好思维上的准备。

  (二)新课讲授

  通过幻灯片给出问题,配图分析,讲清坐火车与坐汽车两类方法均可,每类中任一种办法都可以独立地把从甲地到乙地这件事办好。

  紧跟着给出:

  引申1:若甲地到乙地一天中还有4班轮船可乘,那么一天中,坐这些交通工具从甲地到一点共有多少种不同的走法?

  引伸2:若完成一件事,有 类办法。在第1类办法中有 种不同方法,在第2类办法中有 种不同的方法,……,在第 类办法中有 种不同方法,每一类中的每一种方法均可完成这件事,那么完成这件事共有多少种不同方法?

  这个问题的两个引申由渐入深、循序渐进为学生接受分类计数原理做好了准备。

  板书分类计数原理内容:

  完成一件事,有 类办法。在第1类办法中有 种不同方法,在第2类办法中有 种不同的方法,……,在第 类办法中有 种不同方法,那么完成这件事共有 种不同的方法。(也称加法原理)

  此时,趁学生对于原理有了一个较清晰的认识,引导学生分析分类计数原理内容,启发总结得下面三点注意:(出示幻灯片)

  (1)各分类之间相互独立,都能完成这件事;

  (2)根据问题的特点在确定的分类标准下进行分类;

  (3)完成这件事的任何一种方法必属于某一类,并且分别属于不同两类的两种方法都是不同的方法。

  这样做加深学生对分类计数原理的正确理解,突出了重点,突破了难点。

  接下来给出问题2:(出示幻灯片)

  由A村去B村的道路有3条,由B村去C村的道路有2条(见图9-1),从A村经B村去C村,共有多少种不同的走法?

  提出问题:问题1与问题2同是研究从甲地到乙地的不同走法,请找出这两个问题的不之处?学生会发现问题1中采用乘火车或乘汽车都可以从甲地到乙地,而问题2中必須经过先乘火车后乘汽车两个步骤才能完成从甲地到乙地这件事。

  问题2的讲授采用给出问题,配图分析,组织讨论,强调分步。用多媒体配不同的颜色闪现出六种不同的走法,让学生列式求出不同走法数,并列举所有走法。

  归纳得出:分步计数原理(板书原理内容)

  分步计数原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法。那么,完成这件事共有

  N=m1×m2×…×mn

  种不同的方法。

  同样趁学生对定理有一定的认识,引导学生分析分步计数原理内容,启发总结得下面三点注意:(出示幻灯片)

  (1) 各步骤相互依存,只有各个步骤完成了,这件事才算完成;

  (2) 根据问题的特点在确定的分步标准下分步;

  (3) 分步时要注意满足完成一件事必须并且只需连续完成这N个步骤这件事才算完成。

  (三)应用举例

  教材例1:(书架取书问题)引导学生分析解答,注意区分是分类还是分步。

  例2:由数字0,1,2,3,4可以组成多少个三位整数(各位上的数字允许重复)?本题设置了4个问题:

  (1) 每一个三位数是由什么构成的?(三个整数字)

  (2) 023是一个三位数吗?(百位上不能是0)

  (3) 组成一个三位数需要怎么做?(分成三个步骤来完成:第一步确定百位上的数字;第二步确定十位上的数字;第三步确定个位上的数字)

  (4) 怎样表述?

  教师巡视指导、并归纳

  解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5种选法;第三步确定个位上的数字,仍有5种选法。根据分步计数原理,得到可以组成的三位整数的个数是N=4×5×5=100.

  答:可以组成100个三位整数。

  (教师的连续发问、启发、引导,帮助学生找到正确的解题思路和计算方法,使学生的分析问题能力有所提高。

  教师在第二个例题中给出板书示范,能帮助学生进一步加深对两个基本原理实质的理解,周密的考虑,准确的表达、规范的书写,对于学生周密思考、准确表达、规范书写良好习惯的形成有着积极的促进作用,也可以为学生后面应用两个基本原理解排列、组合综合题打下基础)

  (四)归纳小结

  师:什么时候用分类计数原理、什么时候用分步计数原理呢?

  生:分类时用分类计数原理,分步时用分步计数原理。

  师:应用两个基本原理时需要注意什么呢?

  生:分类时要求各类办法彼此之间相互排斥;分步时要求各步是相互独立的。

  (五)课堂练习

  P222:练习1~4.学生板演第4题

  (对于题4,教师有必要对三个多项式乘积展开后各项的构成给以提示)

  (六)布置作业

  P222:练习5,6,7.

  补充题:

  1.在所有的两位数中,个位数字小于十位数字的共有多少个?

  (提示:按十位上数字的大小可以分为9类,共有9+8+7+…+2+1=45个个位数字小于十位数字的两位数)

  2.某学生填报高考志愿,有m个不同的志愿可供选择,若只能按第一、二、三志愿依次填写3个不同的志愿,求该生填写志愿的方式的种数。

  (提示:需要按三个志愿分成三步。共有m(m-1)(m-2)种填写方式)

  3.在所有的三位数中,有且只有两个数字相同的三位数共有多少个?

  (提示:可以用下面方法来求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)类中每类都是9×9种,共有9×9+9×9+9×9=3×9×9=243个只有两个数字相同的三位数)

  4.某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语,(1)从中任选一个会外语的人,有多少种选法?(2)从中选出会英语与会日语的各1人,有多少种不同的选法?

  (提示:由于8+5=13>10,所以10人中必有3人既会英语又会日语。(1)N=5+2+3;(2)N=5×2+5×3+2×3)

  只要大家用心学习,认真复习,就有可能在高中的战场上考取自己理想的成绩。

高中数学说课稿范文6

  一、教材分析:

  集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

  二、目标分析:

  教学重点、难点

  重点:集合的含义与表示方法。

  难点:表示法的恰当选择。

  教学目标

  l.知识与技能

  (1)通过实例,了解集合的含义,体会元素与集合的属于关系;

  (2)知道常用数集及其专用记号;

  (3)了解集合中元素的确定性。互异性。无序性;

  (4)会用集合语言表示有关数学对象;

  2. 过程与方法

  (1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。

  (2)让学生归纳整理本节所学知识。

  3. 情感、态度与价值观

  使学生感受到学习集合的必要性,增强学习的积极性。

  三、教法分析

  1. 教学方法:学生通过阅读教材,自主学习。思考。交流。讨论和概括,从而更好地完成本节课的教学目标。

  2. 教学手段:在教学中使用投影仪来辅助教学。

  四、过程分析

  (一)创设情景,揭示课题

  1、教师首先提出问题:

  (1)介绍自己的家庭、原来就读的学校、现在的班级。

  (2)问题:像"家庭"、"学校"、"班级"等,有什么共同特征?

  引导学生互相交流。 与此同时,教师对学生的活动给予评价。

  2.活动:

  (1)列举生活中的集合的例子;

  (2)分析、概括各实例的共同特征

  由此引出这节要学的内容。

  设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫

  (二)研探新知,建构概念

  1.教师利用多媒体设备向学生投影出下面7个实例:

  (1)1-20以内的所有质数;

  (2)我国古代的四大发明;

  (3)所有的安理会常任理事国;

  (4)所有的正方形;

  (5)海南省在20xx年9月之前建成的所有立交桥;

  (6)到一个角的两边距离相等的所有的点;

  (7)国兴中学20xx年9月入学的高一学生的全体。

  2.教师组织学生分组讨论:这7个实例的共同特征是什么?

  3.每个小组选出--位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义。

  一般地,指定的某些对象的全体称为集合(简称为集)。集合中的每个对象叫作这个集合的元素。

  4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常用小写字母…表示。

  设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神

  (三)质疑答辩,发展思维

  1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难。使学生明确集合元素的三大特性,即:确定性。互异性和无序性。只要构成两个集合的元素是一样的,我们就称这两个集合相等。

  2.教师组织引导学生思考以下问题:

  判断以下元素的全体是否组成集合,并说明理由:

  (1)大于3小于11的偶数;

  (2)我国的小河流。

  让学生充分发表自己的建解。

  3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由。教师对学生的学习活动给予及时的评价。

  4.教师提出问题,让学生思考

  (1)如果用A表示高-(3)班全体学生组成的集合,用表示高一(3)班的一位同学,是高一(4)班的一位同学,那么与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于。

  如果是集合A的元素,就说属于集合A,记作。

  如果不是集合A的元素,就说不属于集合A,记作。

  (2)如果用A表示"所有的安理会常任理事国"组成的集合,则中国。日本与集合A的关系分别是什么?请用数学符号分别表示。

  (3)让学生完成教材第6页练习第1题。

  5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号。并让学生完成习题1.1A组第1题。

  6.教师引导学生阅读教材中的相关内容,并思考。讨论下列问题:

  (1)要表示一个集合共有几种方式?

  (2)试比较自然语言。列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?

  (3)如何根据问题选择适当的集合表示法?

  使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

  设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。

  (四)巩固深化,反馈矫正

  教师投影学习:

  (1)用自然语言描述集合{1,3,5,7,9};

  (2)用例举法表示集合

  (3)试选择适当的方法表示下列集合:教材第6页练习第2题。

  设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象(五)归纳小结,布置作业

  小结:在师生互动中,让学生了解或体会下例问题:

  1.本节课我们学习了哪些知识内容?

  2.你认为学习集合有什么意义?

  3.选择集合的表示法时应注意些什么?

  设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。

  作业:

  1.课后书面作业:第13页习题1.1A组第4题。

  2. 元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材。

高中数学说课稿范文7

  各位评委老师你们好,我是第?号选手。我今天说课的题目是《 》,我将从教材分析,教法,学法,教学程序,等几个方面进行我的说课。

  一,教材分析

  这部分我主要从3各方面阐述

  1, 教材的地位和作用

  《 》是北师大版必修?第?章第?节的内容,在此之前,同学们已经学习了、,这些对本节课的学习有一定的铺垫作用,同是学好本节的内容不仅加深前面所学习的知识,而且为后面我们将要学习的?知识打好基础,?所以说本节课的学习在整个高中数学学习过程中占有重要地位!

  2.根据教学大纲的规定,教学内容的要求,教学对象的实情我确定了如下3维教学目标(i)知识目标:

  II能力目标;初步培养学生归纳,抽象,概括的思维能力。

  训练学生认识问题,分析问题,解决问题的能力

  III情感目标;通过学生的探索,史学生体会数学就在我们身边,让学生发现生活的数学,培养不断超越的创新品质,提高数学素养。

  3, 结合以上分析以及高一学生的人知水平我确定啦本节课的重难点

  教学重点:

  教学难点;

  二,教法

  教学方法是完成教学任务的手段,恰当的学者教学方法至关重要,根据本节课的教学内容,考虑到高一学生已经初步具有一定的探索能力,并喜欢挑战问题的实际情况,为啦更有效的突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的知道思想。我主要采用 问题探究法 引导发现发,案例教学法,讲授法,在教学过程中精心设计带有启发性和思考性的问题,满足学生探索的欲望,培养学生的学习兴趣,激发来自学生主体最有利的动力。并运用多媒体课件的形式,更形象直观,提高教学效果的同时加大啦课堂密度!

  学法

  根据学生的年龄特征,运用讯息渐进,逐步升入,理论联系实际的规律,让学生从问题中质疑,尝试,归纳,总结,运用。培养学生发现问题,研究问题,分析问题的能力。自主参与知识的发生,发展,形成过程,完成从感性认识 到理性思维的质的飞跃,史学生在知识和能力方面都有所提高。

  三,教学程序

  1, 创设情境,提出问题

  让学生产生强烈的问题意识,学生试着利用以前的知识经验,同化索引出当前学习的新知识,激发学习的兴趣和动机。

  2, 引导探究,直奔主题。(揭示概念)

  参用小组合作的方式,各小组派代表发表成果,教师作为教学的引导者,给予肯定的评价,并给出一定的指导,最后师生共同得出??!教师引导学生进一步学习。整个过程充分突出学生的主体地位,培养学生合作探究的能力,激发兴趣,更让学生在思考学术问题以及解决数学问题的思想方法上有更深的交流。

  3, 自我尝试,初步应用

  在讲解是,不仅在于怎样接,更在于为什么这样解,及时引导学生探究运用知识,解决问题的方法,及时对解题方法和规律进行概括,有利于培养学生的思维能力。 4 .当堂训练,巩固深化(反馈矫正)

  通过学生的主体参与,让学生巩固所学的知识,实现对知识再认识的以及在数学解题思想方法层面上进一步升华

  5,归纳小结,回顾反思

  从知识,方法,经验等方面进行总结。让学生思考本节课学到啦那些知识,还有那些疑问。本节课最大的体验。本节课你学会那些技能。

  知识性的内容小结,可以把课堂教学传授的知识尽快转化为学生的素养,数学思想发放的小结,可以使学生更深刻地理解数学思想发放在解题中的地位和作用,并且逐步培养学生良好的个性品质目标。

  ,6,变式延伸,布置作业

  必做题,对本届课学生知识水平的反馈。选作题,对本节课知识内容的延伸。使不同层次学生都可以收获成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,让每个学生在原有的基础上有所发展。做到人人学数学,人人学不同的数学。

  7板书设计

  力图简洁,形象,直观,概括以便学生易于掌握。

  四,教学评价

  学生学习结果评价当然重要,但是学习过程的评价更加重要。本节课中高度重视学生学习过程中的参与度,自信心,团队精神,合作意识,独立思考习惯的养成。数学发现的能力,以及学习的兴趣和成就感,,学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多学生主动参与,师生对话可以实现师生合作,适度的研讨可以驻京生生交流,知识的生成和问题的解决可以让学生感受到成功的喜悦。缜密的思考可以培养学生独立思考的习惯,让学生在教室评价,学生评价以及自我评价的过程中体验知识的积累,探索能力的长进和思维品质的提高,为学生的可持续发展打下基础,

  以上就是我的说课内容。不当之处,希望各位老师给予指正。谢谢各位评委老师!你们幸苦啦!

高中数学说课稿范文8

  各位老师:

  大家好!我叫周婷婷,来自湖南科技大学。我说课的题目是《算法的概念》,内容选自于新课程人教A版必修3第一章第一节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法分析、学情分析、教学过程分析等五大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1.教材所处的地位和作用

  现代社会是一个信息技术发展很快的社会,算法进入高中数学正是反映了时代的需要,它是当今社会必备的基础知识,算法的学习是使用计算机处理问题前的一个必要的步骤,它可以让学生们知道如何利用现代技术解决问题。又由于算法的具体实现上可以和信息技术相结合。因此,算法的学习十分有利于提高学生的逻辑思维能力,培养学生的理性精神和实践能力。

  2.教学的重点和难点

  重点:初步理解算法的定义,体会算法思想,能够用自然语言描述算法难点:把自然语言转化为算法语言。

  二、教学目标分析

  1.知识目标:了解算法的含义,体会算法的思想;能够用自然语言描述解决具体问题的算法;理解正确的算法应满足的要求。

  2.能力目标:让学生感悟人们认识事物的一般规律:由具体到抽象,再有抽象到具体,培养学生的观察能力,表达能力和逻辑思维能力。

  3.情感目标:对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一有力工具,进一步提高探索、认识世界的能力。

  三、教学方法分析

  采用"问题探究式"教学法,以多媒体为辅助手段,让学生主动发现问题、分析问题、解决问题,培养学生的探究论证、逻辑思维能力。

  四、学情分析

  算法这部分的使用性很强,与日常生活联系紧密,虽然是新引入的章节,但很容易激发学生的学习兴趣。在教师的引导下,通过多媒体辅助教学,学生比较容易掌握本节课的内容。

  五、教学过程分析

  1.创设情景:我首先向学生们展示章头图,介绍图中的后景是取自宋朝数学家朱世杰的数学作品《四元玉鉴》,告诉学生们章头图正是体现了中国古代数学与现代计算机科学的联系,它们的基础都是"算法".

  「设计意图」是为了充分挖掘章头图的教学价值,体现

  1)算法概念的由来;

  2)我们将要学习的算法与计算机有关;

  3)展示中国古代数学的成就;

  4)激发学生学习算法的兴趣。从而顺其自然的过渡到本节课要讨论的话题。(约4分钟)

  2.引入新课:在这一环节我首先和学生们一起回顾如何解二元一次方程组,并引导他们归纳二元一次方程组的求解步骤,从而让学生经历算法分析的基本过程,培养思维的条理性,引导学生关注更具一般性解法,形成解法向算法过渡的准备,为建立算法概念打下基础。紧接着在此基础上进一步复习回顾解一般的二元一次方程组的步骤,引导学生分析解题过程的结构,写出求一般的二元一次方程组的解的算法,并把它编成程序,让学生输入数据,体验计算机直接给出方程组的解。目的是让学生明白算法是用来解决某一类问题的,从而提高学生对算法的普遍适用性的认识,为建立算法的概念做好铺垫。

  之后,我就向学生们提出问题:到底什么是算法?如何用语言来表达算法的涵义?这里让学生们根据刚刚的探索交流、思考并回答,然后老师进行归纳,得出算法的基本概念,并帮助学生认识算法的概念,指出有穷性,确定性,可行性。这样可以让学生们真正参与到算法概念的形成过程中来,体会算法思想。(约8分钟)

  3.例题讲解:在这一环节我安排了两道例题,以帮助学生们能更好地理解算法的基本概念,并应用到实际解决问题中去,而不只是单纯的对数学思想的领悟。

  这两道例题均选自课本的例1和例2.

  例1是让我们设定一个程序以判断一个数是否为质数。质数是我们之前已经学习的内容,为了能更顺利地完成解题过程,这里有必要引导学生们回顾一下质数应满足的条件,然后再根据这个来探索解题步骤。通过例1让学生认识到求解结构中存在"重复".为导出一般问题的算法创造条件,也为学习算法的自然语言表示提供前提。告诉学生们本算法就是用自然语言的形式描述的。并且设计算法一定要做到以下要求:

  (1)写出的算法必须能解决一类问题,并且能够重复使用。

  (2)要使算法尽量简单、步骤尽量少。

  (3)要保证算法正确,且计算机能够执行。

  在例1的基础上我们继续研究例2,例2是要求我们设计一个利用二分法来求解方程的近似根的程序。我们首先要对算法作分析,回顾用二分法求解方程近似根的过程,然后设计出解题步骤。二分法是算法中的`经典问题,具有明显的顺序和可操作的特点。因此通过例2可以让学生进一步了解算法的逻辑结构,领会算法的思想,体会算法的的特征。同时也可以巩固用自然语言描述算法,提高用自然语言描述算法的表达水平。另外,借助例题加强学生对算法概念的理解,体会算法具有程序性、有限性、构造性、精确性、指向性的特点,算法以问题为载体,泛泛而谈没有意义。(约20分钟)

  4.课堂小结:

  (1)算法的概念和算法的基本特征

  (2)算法的描述方法,算法可以用自然语言描述。

  (3)能利用算法的思想和方法解决实际问题,并能写出一此简单问题的算法课堂小结是一堂课内容的概括和总结,有利于学生把握本节课的重点,对所学知识有一个系统整体的认识。(约6分钟)

  5.布置作业:课本练习1、2题

  课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。对作业实施分层设置,分必做和选做,利于拓展学生的自主发展的空间。

高中数学说课稿范文9

  一、教材分析

  1、教材所处的地位和作用

  奇偶性是人教A版第一章集合与函数概念的第3节函数的基本性质的第2小节。

  奇偶性是函数的一条重要性质,教材从学生熟悉的 及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。因此,本节课起着承上启下的重要作用。

  2、学情分析

  从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。

  从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题、

  3、教学目标

  基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:

  【知识与技能】

  1、能判断一些简单函数的奇偶性。

  2、能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。

  【过程与方法】

  经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。

  【情感、态度与价值观】

  通过自主探索,体会数形结合的思想,感受数学的对称美。

  从课堂反应看,基本上达到了预期效果。

  4、教学重点和难点

  重点:函数奇偶性的概念和几何意义。

  几年的教学实践证明,虽然函数奇偶性这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。他们往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了考虑函数定义域的问题。因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。因此,我把函数的奇偶性概念设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。

  难点:奇偶性概念的数学化提炼过程。

  由于,学生看待问题还是静止的、片面的,抽象概括能力比较薄弱,这对建构奇偶性的概念造成了一定的困难。因此我把奇偶性概念的数学化提炼过程设计为本节课的难点。

  二、教法与学法分析

  1、教法

  根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。从课堂反应看,基本上达到了预期效果。

  2、学法

  让学生在观察一归纳一检验一应用的学习过程中,自主参与知识的发生、发展、形成的过程,从而使学生掌握知识。

  三、教学过程

  具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、形成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下面我对这六个环节进行说明。

  (一)设疑导入、观图激趣

  由于本节内容相对独立,专题性较强,所以我采用了开门见山导入方式,直接点明要学的内容,使学生的思维迅速定向,达到开始就明确目标突出重点的效果。

  用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。

  (二)指导观察、形成概念

  在这一环节中共设计了2个探究活动。

  探究1 、2 数学中对称的形式也很多,这节课我们就以函数和=︱x︱以及和为例展开探究。这个探究主要是通过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y轴(原点)对称。接着学生填表,从数值角度研究图象的这种特征,体现在自变量与函数值之间有何规律? 引导学生先把它们具体化,再用数学符号表示。借助课件演示(令 比较 得出等式 , 再令 ,得到 ) 让学生发现两个函数的对称性反应到函数值上具有的特性, ()然后通过解析式给出严格证明,进一步说明这个特性对定义域内任意一个 都成立。 最后给出偶函数(奇函数)定义(板书)。

  在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。

  (三) 学生探索、领会定义

  探究3 下列函数图象具有奇偶性吗?

  设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是--定义域关于原点对称。(突破了本节课的难点)

  (四)知识应用,巩固提高

  在这一环节我设计了4道题

  例1判断下列函数的奇偶性

  选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下面完成。

  例1设计意图是归纳出判断奇偶性的步骤:

  (1) 先求定义域,看是否关于原点对称;

  (2) 再判断f(-x)=-f(x) 还是 f(-x)=f(x)。

  例2 判断下列函数的奇偶性:

  例3 判断下列函数的奇偶性:

  例2、3设计意图是探究一个函数奇偶性的可能情况有几种类型?

  例4(1)判断函数的奇偶性。

  (2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗?

  例4设计意图加强函数奇偶性的几何意义的应用。

  在这个过程中,我重点关注了学生的推理过程的表述。通过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,达到当堂消化吸收的效果。

  (五)总结反馈

  在以上课堂实录中充分展示了教法、学法中的互动模式,问题贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。

  在本节课的最后对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用能力、增强错误的预见能力是提高数学综合能力的很重要的策略。

  (六)分层作业,学以致用

  必做题:课本第36页练习第1-2题。

  选做题:课本第39页习题1、3A组第6题。

  思考题:课本第39页习题1、3B组第3题。

  设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步达到不同的人在数学上得到不同的发展。

高中数学说课稿范文10

各位教师:

  今天我说课的题目是《必修》4第二章第二单元中“平面向量的线性运算”的第一节课《向量的加法》,我从以下几个方面阐述本课的教学设计。

  一、教材分析:

  《向量的加法》是《必修》4第二章第二单元中“平面向量的线性运算”的第一节课。本节内容有向量加法的平行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。向量的加法是向量的线性运算中最基本的一种运算,向量的加法及其几何意义为后继学习向量的减法运算及其几何意义、向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。所以本课在“平面向量”及“空间向量”中有很重要的地位。

  二、学情分析:

  学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,知道向量可以自由移动,这是学习本节内容的基础。学生对数的运算了如指掌,并且在物理中学过力的合成、位移的合成等矢量的加法,所以向量的加法可通过类比数的加法、以所学的物理模型为背景引入,这样做有利于学生更好地理解向量加法的意义,准确把握两个加法法则的特点。

  三、教学目的:

  1、通过对向量加法的探究,使学生掌握向量加法的概念,结合物理学实际理解向量加法的意义。能正确领会向量加法的平行四边形法则和三角形法则的几何意义,并能运用法则作出两个已知向量的和向量。

  2、在应用活动中,理解向量加法满足交换律和结合律以及表述两个运算律的几何意义。掌握有特殊位置关系的两个向量之和,比如共线向量,共起点向量、共终点向量等。

  3、通过本节的学习,培养学生类比、迁移、分类、归纳等数学方面的能力。

  四、教学重、难点

  重点:向量的加法法则。探究向量的加法法则并正确应用是本课的重点。两个加法法则各有特点,联系紧密,你中有我,我中有你,实质相同,但是三角形法则适用范围更加广泛,且简便易行,所以是详讲内容,平行四边形法则在本课中所占份量略少于三角形法则。

  难点:对三角形法则的理解;方向相反的两个向量的加法。主要是让学生认识到三角形法则的实质是:将已知向量首尾相接,而不是表示向量的有向线段之间必须构成三角形。

  五、教学方法

  本节采用以下教学方法:1、类比:由数的加法运算类比向量的加法运算。2、探究:由力的合成引入平行四边形法则,在法则的运用中观察图形得出三角形法则,探求共线向量的加法,发现三角形法则适用于任意向量相加;通过图形,观察得出向量加法满足交换律、结合律等,这些都体现探究式教学法的运用。3、讲解与练习:对两个法则特点的分析,例题都采取了引导与讲解的方法,学生课堂完成教材中的练习。4、多媒体技术的运用,能直观地表现向量的平移,相等向量的意义,更能说清两个法则的几何意义及运算律。

  六、数学思想的体现:

  1、分类的思想:总的来说本课中向量的加法分为不共线向量及共线向量两种形式,共线向量又分为方向相同与方向相反两种情形,然后专门对零向量与任意向量相加作了规定,这样对任意向量的加法都做了讨论,线索清楚。

  2、类比思想:使之与数的加法进行类比,使学生对向量的加法不致于太陌生,既有似曾相识的感觉,又能从对比中看出两者的不同,效果较好。

  3、归纳思想:主要体现在以下三个环节①学完平行四边形法则和三角形法则后,归纳总结,对不共线向量相加,两个法则都可以选用。②由共线向量的加法总结出三角形法则适用于任意两个向量的相加,而三角形法则仅适用于不共线向量相加。③对向量加法的结合律和探讨中,又使学生发现了三角形法则还适用于任意多个向量的加法。归纳思想在这三个环节中的运用,使得学生对两个加法法则,尤其是三角形法则的理解,步步深入。

  七、教学过程:

  1、回顾旧知:本节要进行向量的平移,且对向量加法分共线与不共线两种情况,所以要复习向量、相等向量、共线向量等概念,这些都是新课学习中必要的知识铺垫。

  2、引入新课:

  (1)平行四边形法则的引入。

  学生在物理学中虽然接触过位移的合成,但是并没有形成三角形法则的概念;而对平行四边形法则学生已学过,很熟悉。所以我决定由力的合成引入向量加法的平行四边形法则。平行四边形法则的特点是起点相同,但是物理中力的合成是在有相同的作用点的条件下合成的,引入到数学中向量加法的平行四边形法则,所给出的图形也是现成的平行四边形,而学生刚学完相等向量,对相等向量的概念还没有深刻的认识,易产生误解:表示两个已知向量的有向线段的起点必须在一起才能用平行四边形法则,不在一起不能用。这时要通过讲解例1,使学生认识到可以通过平移向量,使表示两个向量的有向线段有共同的起点。这一点对理解及运用法则求两向量的和很重要。

  设计意图:本着从学生最熟悉、离学生最近的知识经验为接入点,用学生熟知的方法来解决新的问题——向量的加法,这样新中有旧,学生容易接受,也使学科间的渗透发挥了作用,加深了学生对向量加法的平行四边形法则的“起点相同”这一特点的认识,例1的讲解使学生认识到当表示向量的有向线段的起点不在一起时,须把起点移到一起,至此才能使学生完成对平行四边形法则理解真正到位。

  (2)三角形法则的引入。三角形法则没有按照教材中利用位移的合成引入,而是从前面所讲的平行四边形法则的图形中直接引入(如图)。

  所以这种把两个向量相加的方法称为三角形法则。接下来用幻灯片完整展示三角形法则,同时法则的作法叙述、作图过程对学生也起到了示例的作用。于是前面的例1还可以利用三角形法则来做。

  这时,总结出两个不共线向量求和时,平行四边形法则与三角形法则都可以用。

  设计意图:由平行四边形法则的图形引入三角形法则,可以很清楚地使学生从向何意义上认识到两个法则之间的密切联系,理解它们的实质,而且衔接自然,能够使学生对比地得出两个法则的特点与实质,并对两个法则的特点有较深刻的印象。

  (3)共线向量的加法

  方向相同的两个向量相加,对学生来说较易完成,“将它们接在一起,取它们的方向及长度之和,作为和向量的方向与长度。”引导学生分析作法,结果发现还是运用了三角形法则:首尾相接,方向由第一个向量的起点指向第二个向量的终点。

  方向相反的两个向量相加,对学生来说是个难点,首先从作图上不知道怎样做。但是学生学过有理数加法中的异号两数相加:“异号两数相加,用较大的绝对值减去较小的绝对值,符号取绝对值较大的数的符号。”类比异号两数相加,他们会用较长的模减去较短的模,方向取模较长的向量的方向。具体做法由老师引导学生尝试运用三角形法则去做,发现结论正确。

  反思过程,学生自然会想到方向相同的两个向量相加,类似于同号两数相加。这说明两个共线向量相加依然可用三角形法则。对有如下规定:

  +

  =

  +

  =

  通过以上几个环节的讨论,可以作个简单的小结:两个不共线向量相加,可采用平行四边形法则或三角形法则,而两个共线向量相加在本课所学方法中只能用三角形法则,说明三角形法则适用于任意两个向量相加。

  设计意图:通过对共线向量加法的探讨,拓宽了学生对三角形法则的认识,使得不同位置的向量相加都有了依据,并且采用类比的方法,使学生对共线向量的加法,尤其是方向相反的两个向量的加法更易于理解,可以化解难点。

  (4)向量加法的运算律

  ①交换律:交换律是利用平行四边形法则的图形,又结合三角形法则得出,理解起来没什么困难,再一次强化了学生对两个法则特点及实质的认识。

  ②结合律:结合律是通过三个向量首尾相接,先加前两个再与第三个向量相加,和先加后两个向量再与第一个向量相加所得结果相同。

  接下来是对应的两个练习,运用交换律与结合律计算向量的和。

  设计意图:运算律的引入给加法运算带来方便,从后面的练习中学生能够体会到这点。由结合律还使学生发现,多个向量相加,同样可以运用三角形法则:将所加向量首尾相接,和向量的方向是由第一个向量的起点指向最后一个向量的终点。这样使学生明白,三角形法则适用于任意多个向量相加。

  3、小结

  先由学生小结,检查学生对本课重要知识的认识,也给学生一个概括本节知识的机会,然后用课件展示小结内容,使学生印象更深。

  (1)平行四边形法则:起点相同,适用于不共线向量的求和。

  (2)三角形法则首尾相接,适用于任意多个向量的求和。

  (3)运算律

  交换律:

  +

  =

  +

  结合律:(

  +

  )+

  =

  +(

  +

  )

  4、作业:P91,A组1、2、3。

  《向量的加法》评课稿

  本节所授内容基本与原先设想一致,评略得当,重点突出,难点化解。在两个加法则的引入、讲解及运用的处理方法、时间安排都把握得比较好,能够引导学生积极主动地探索平行四边形法则和三角形法则,使学生对两个加法法则形成了正确的认识,留下了深刻的印象,通过反馈练习,可以看出学生对两个法则的运用掌握的比较好,比较完整地实现了教学目标。

  本节课的教学方法运用比较合理:采取了类比、探究、讲练结合及多媒体技术等多种方法。对数学课来说,本节课最显著的特点是将全部板书都移到了课件上,对我来说,是一次尝试,因为以前,我认为数学课没必要用课件,对全部利用课件上课更是不能接受。但是这次讲课改变了我的看法。从学生的反馈情况来看,这样处理对教学效果没有什么不良影响,反而使学生能更直观地理解两个加法法则和运算律,通过课件中的向量的平移,加深了学生对上节课所学的“相等向量”的概念的理解,也加大了课堂容量,还没有拥挤之感。从学生对内容小结的叙述看,没有板书,并没有妨碍本节内容在学生脑海中留下的印象。原先的设计中,板书设计也有,打在教案的后面。

  通过这节课的讲授,我收获很多:首先,从课程的构思上,没有按照教参建议及网上普遍的编排方法先讲三角形法则,而是先由学生学过的力的合成引入了平行四边形法则,由此又引入三角形法则,效果也不错。可见,对教材的处理确实要根据学生情况,灵活裁剪,不能生搬硬套。

  其次,通过这节课我感到,对有些与图形联系较多的课程,使用课件讲解简便易行,关键是要根据教学设计制作合适的课件,并且合理使用。

  本节缺憾也很多。首先,学生活动还是偏少,没有充分、全面地调动学生热情。其次,语言不够精炼,有时比较啰嗦,也耽误了时间,第三,学生发言时,好打断学生,总觉得学生说得不清楚,抢学生话头,打击了学生课堂参与的积极性,很不好。

  以上是我对这节课的反思,不到之处,请大家指点。

高中数学说课稿范文11

  高三第一阶段复习,也称“知识篇”。在这一阶段,学生重温高一、高二所学课程,全面复习巩固各个知识点,熟练掌握基本方法和技能;然后站在全局的高度,对学过的知识产生全新认识。在高一、高二时,是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,学的知识往往是零碎和散乱,而在第一轮复习时,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,把各个知识点融会贯通。对于普通高中的学生,第一轮复习更为重要,我们希望能做高考试题中一些基础题目,必须侧重基础,加强复习的针对性,讲求实效。

  一、内容分析说明

  1、本小节内容是初中学习的多项式乘法的继续,它所研究的二项式的乘方的展开式,与数学的其他部分有密切的联系:

  (1)二项展开式与多项式乘法有联系,本小节复习可对多项式的变形起到复习深化作用。

  (2)二项式定理与概率理论中的二项分布有内在联系,利用二项式定理可得到一些组合数的恒等式,因此,本小节复习可加深知识间纵横联系,形成知识网络。

  (3)二项式定理是解决某些整除性、近似计算等问题的一种方法。

  2、高考中二项式定理的试题几乎年年有,多数试题的难度与课本习题相当,是容易题和中等难度的

  试题,考察的题型稳定,通常以选择题或填空题出现,有时也与应用题结合在一起求某些数、式的

  近似值。

  二、学校情况与学生分析

  (1)我校是一所镇普通高中,学生的基础不好,记忆力较差,反应速度慢,普遍感到数学难学。但大部分学生想考大学,主观上有学好数学的愿望。

  (2)授课班是政治、地理班,学生听课积极性不高,听课率低(60﹪),注意力不能持久,不能连续从事某项数学活动。课堂上喜欢轻松诙谐的气氛,大部分能机械的模仿,部分学生好记笔记。

  三、教学目标

  复习课二项式定理计划安排两个课时,本课是第一课时,主要复习二项展开式和通项。根据历年高考对这部分的考查情况,结合学生的特点,设定如下教学目标:

  1、知识目标:(1)理解并掌握二项式定理,从项数、指数、系数、通项几个特征熟记它的展开式。

  (2)会运用展开式的通项公式求展开式的特定项。

  2、能力目标:(1)教给学生怎样记忆数学公式,如何提高记忆的持久性和准确性,从而优化记忆品质。记忆力是一般数学能力,是其它能力的基础。

  (2)树立由一般到特殊的解决问题的意识,了解解决问题时运用的数学思想方法。

  3、情感目标:通过对二项式定理的复习,使学生感觉到能掌握数学的部分内容,树立学好数学的信心。有意识地让学生演练一些历年高考试题,使学生体验到成功,在明年的高考中,他们也能得分。

  四、教学过程

  1、知识归纳

  (1)创设情景:①同学们,还记得吗? 、 、 展开式是什么?

  ②学生一起回忆、老师板书。

  设计意图:①提出比较容易的问题,吸引学生的注意力,组织教学。

  ②为学生能回忆起二项式定理作铺垫:激活记忆,引起联想。

  (2)二项式定理:①设问 展开式是什么?待学生思考后,老师板书

  = C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)

  ②老师要求学生说出二项展开式的特征并熟记公式:共有 项;各项里a的指数从n起依次减小1,直到0为止;b的指数从0起依次增加1,直到n为止。每一项里a、b的指数和均为n。

  ③巩固练习 填空

  设计意图:①教给学生记忆的方法,比较分析公式的特点,记规律。

  ②变用公式,熟悉公式。

  (3) 展开式中各项的系数C , C , C ,… , 称为二项式系数.

  展开式的通项公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展开式中第r+1项.

  2、例题讲解

  例1求 的展开式的第4项的二项式系数,并求的第4项的系数。

  讲解过程

  设问:这里 ,要求的第4项的有关系数,如何解决?

  学生思考计算,回答问题;

  老师指明①当项数是4时, ,此时 ,所以第4项的二项式系数是 ,

  ②第4项的系数与的第4项的二项式系数区别。

  板书

  解:展开式的第4项

  所以第4项的系数为 ,二项式系数为 。

  选题意图:①利用通项公式求项的系数和二项式系数;②复习指数幂运算。

  例2 求 的展开式中不含的 项。

  讲解过程

  设问:①不含的 项是什么样的项?即这一项具有什么性质?

  ②问题转化为第几项是常数项,谁能看出哪一项是常数项?

  师生讨论 “看不出哪一项是常数项,怎么办?”

  共同探讨思路:利用通项公式,列出项数的方程,求出项数。

  老师总结思路:先设第 项为不含 的项,得 ,利用这一项的指数是零,得到关于 的方程,解出 后,代回通项公式,便可得到常数项。

  板书

  解:设展开式的第 项为不含 项,那么

  令 ,解得 ,所以展开式的第9项是不含的 项。

  因此 。

  选题意图:①巩固运用展开式的通项公式求展开式的特定项,形成基本技能。

  ②判断第几项是常数项运用方程的思想;找到这一项的项数后,实现了转化,体现转化的数学思想。

  例3求 的展开式中, 的系数。

  解题思路:原式局部展开后,利用加法原理,可得到展开式中的 系数。

  板书

  解:由于 ,则 的展开式中 的系数为 的展开式中 的系数之和。

  而 的展开式含 的项分别是第5项、第4项和第3项,则 的展开式中 的系数分别是: 。

  所以 的展开式中 的系数为

  例4 如果在( + )n的展开式中,前三项系数成等差数列,求展开式中的有理项.

  解:展开式中前三项的系数分别为1, , ,

  由题意得2× =1+ ,得n=8.

  设第r+1项为有理项,T =C · ·x ,则r是4的倍数,所以r=0,4,8.

  有理项为T1=x4,T5= x,T9= .

  3、课堂练习

  1.(20xx年江苏,7)(2x+ )4的展开式中x3的系数是

  A.6B.12 C.24 D.48

  解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系数为C ·22=24.

  答案:C

  2.(20xx年全国Ⅰ,5)(2x3- )7的展开式中常数项是

  A.14 B.14 C.42 D.-42

  解析:设(2x3- )7的展开式中的第r+1项是T =C (2x3) (- )r=C 2 ·

  (-1)r·x ,

  当- +3(7-r)=0,即r=6时,它为常数项,∴C (-1)6·21=14.

  答案:A

  3.(20xx年湖北,文14)已知(x +x )n的展开式中各项系数的和是128,则展开式中x5的系数是_____________.(以数字作答)

  解析:∵(x +x )n的展开式中各项系数和为128,

  ∴令x=1,即得所有项系数和为2n=128.

  ∴n=7.设该二项展开式中的r+1项为T =C (x ) ·(x )r=C ·x ,

  令 =5即r=3时,x5项的系数为C =35.

  答案:35

  五、课堂教学设计说明

  1、这是一堂复习课,通过对例题的研究、讨论,巩固二项式定理通项公式,加深对项的系数、项的二项式系数等有关概念的理解和认识,形成求二项式展开式某些指定项的基本技能,同时,要培养学生的运算能力,逻辑思维能力,强化方程的思想和转化的思想。

  2、在例题的选配上,我设计了一定梯度。第一层次是给出二项式,求指定的项,即项数已知,只需直接代入通项公式即可(例1);第二层次(例2)则需要自己创造代入的条件,先判断哪一项为所求,即先求项数,利用通项公式中指数的关系求出,此后转化为第一层次的问题。第三层次突出数学思想的渗透,例3需要变形才能求某一项的系数,恒等变形是实现转化的手段。在求每个局部展开式的某项系数时,又有分类讨论思想的指导。而例4的设计是想增加题目的综合性,求的n过程中,运用等差数列、组合数n等知识,求出后,有化归为前面的问题。

  六、个人见解

高中数学说课稿范文12

  各位评委:下午好!

  我叫 ,来自 。今天我说课的课题《 》(第 课时)。下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。

  一、教材分析

  (一)教材的地位和作用

  《 》是人教版出版社 第 册、第 单元的内容。《》既是 在知识上的延伸和发展,又是本章 的运用与巩固,也为下一章 教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了 的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。

  概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。

  (二)、学情分析

  通过前一阶段的教学,学生对 的认识已有了一定的认知结构,主要体现在三个层面:

  知识层面:学生在已初步掌握了 。

  能力层面:学生在初步已经掌握了用

  初步具备了 思想。 情感层面:学生对数学新内容的学习有相当的兴趣和积极性。但探究问题的能力以及合作交流等方面发展不够均衡.

  (三)教学课时

  本节内容分 课时学习。(本课时,品味数学中的和谐美,体验成功的乐趣。)

  二、教学目标分析

  根据教学大纲的要求、本节教材的特点和高中生的认知规律,本节课的教学目标确定为:

  知识与技能:

  过程与方法:

  情感态度:

  (例如:创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。在自主探究与讨论交流过程中,培养学生的合作意识和创新精神. 通过 对立统一关系的认识,对学生进行辨证唯物主义教育)

  在探索过程中,培养独立获取数学知识的能力。在解决问题的过程中,让学生感受到成功的喜悦,树立学好数学的信心。在解答数学问题时,让学生养成理性思维的品质。

  三、重难点分析

  重点确定为:

  要把握这个重点。关键在于理解

  其本质就是

  本节课的难点确定为:

  要突破这个难点,让学生归纳

  作铺垫。

  四、教法与学法分析

  (一)学法指导

  教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。

  (二)教法分析

  本节课设计的指导思想是:现代认知心理学--建构主义学习理论。

  建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。

  本节课采用“诱思探究教学法”( 陕西师范大学教育研究所张熊飞教授)。在课堂教学中凸显学生主体地位的重要性,不再是以教师为中心去设计教学过程,而是以学生为主体去组织教学进程。把课堂真正地交给了学生,学生主体地位得以实现。

  五、说教学过程

  本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。

  (一)创设情景………………….

  (二)比旧悟新………………….

  (三)归纳提炼…………………

  (四)应用新知,熟练掌握 …………………

  (五)总结…………………

  (六)作业布置…………………

  (七)板书设计…………………

  以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位专家批评指正。谢谢

  著名美国数学家和数学教育家波利亚 包括“弄清问题”、“拟定计划”、“实现计划”和“回顾反思”四大步骤的解题全过程,它们就好比是寻找和发现解法的思维过程进行分解,使我们对解题的思维过程看得见,摸得着,易于操作。精髓是启发你去联想。联想什么?怎样联想?

高中数学说课稿范文12篇(中学数学说课稿范文)

将本文的Word文档下载到电脑,方便收藏
推荐度:
点击下载文档文档为doc格式